Bv9ARM-book.xml 547 KB
Newer Older
1
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
2
              "http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
3
4
	       [<!ENTITY mdash "&#8212;">]>
<!--
Automatic Updater's avatar
Automatic Updater committed
5
 - Copyright (C) 2004-2008  Internet Systems Consortium, Inc. ("ISC")
6
7
 - Copyright (C) 2000-2003  Internet Software Consortium.
 -
Automatic Updater's avatar
Automatic Updater committed
8
 - Permission to use, copy, modify, and/or distribute this software for any
9
10
11
12
13
14
15
16
17
18
19
20
 - purpose with or without fee is hereby granted, provided that the above
 - copyright notice and this permission notice appear in all copies.
 -
 - THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH
 - REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
 - AND FITNESS.  IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT,
 - INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
 - LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
 - OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
 - PERFORMANCE OF THIS SOFTWARE.
-->

21
<!-- File: $Id: Bv9ARM-book.xml,v 1.367 2008/09/23 03:59:16 marka Exp $ -->
22
<book xmlns:xi="http://www.w3.org/2001/XInclude">
23
24
25
26
27
28
  <title>BIND 9 Administrator Reference Manual</title>

  <bookinfo>
    <copyright>
      <year>2004</year>
      <year>2005</year>
Mark Andrews's avatar
Mark Andrews committed
29
      <year>2006</year>
Mark Andrews's avatar
Mark Andrews committed
30
      <year>2007</year>
Automatic Updater's avatar
Automatic Updater committed
31
      <year>2008</year>
32
33
34
35
36
37
38
      <holder>Internet Systems Consortium, Inc. ("ISC")</holder>
    </copyright>
    <copyright>
      <year>2000</year>
      <year>2001</year>
      <year>2002</year>
      <year>2003</year>
Mark Andrews's avatar
Mark Andrews committed
39
      <holder>Internet Software Consortium.</holder>
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
    </copyright>
  </bookinfo>

  <chapter id="Bv9ARM.ch01">
    <title>Introduction</title>
    <para>
      The Internet Domain Name System (<acronym>DNS</acronym>)
      consists of the syntax
      to specify the names of entities in the Internet in a hierarchical
      manner, the rules used for delegating authority over names, and the
      system implementation that actually maps names to Internet
      addresses.  <acronym>DNS</acronym> data is maintained in a
      group of distributed
      hierarchical databases.
    </para>

    <sect1>
      <title>Scope of Document</title>

      <para>
        The Berkeley Internet Name Domain
Mark Andrews's avatar
grammer    
Mark Andrews committed
61
        (<acronym>BIND</acronym>) implements a
62
63
        domain name server for a number of operating systems. This
        document provides basic information about the installation and
64
        care of the Internet Systems Consortium (<acronym>ISC</acronym>)
65
        <acronym>BIND</acronym> version 9 software package for
66
        system administrators.
67
      </para>
68

69
      <para>
70
        This version of the manual corresponds to BIND version 9.4.
71
      </para>
72

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    </sect1>
    <sect1>
      <title>Organization of This Document</title>
      <para>
        In this document, <emphasis>Section 1</emphasis> introduces
        the basic <acronym>DNS</acronym> and <acronym>BIND</acronym> concepts. <emphasis>Section 2</emphasis>
        describes resource requirements for running <acronym>BIND</acronym> in various
        environments. Information in <emphasis>Section 3</emphasis> is
        <emphasis>task-oriented</emphasis> in its presentation and is
        organized functionally, to aid in the process of installing the
        <acronym>BIND</acronym> 9 software. The task-oriented
        section is followed by
        <emphasis>Section 4</emphasis>, which contains more advanced
        concepts that the system administrator may need for implementing
        certain options. <emphasis>Section 5</emphasis>
        describes the <acronym>BIND</acronym> 9 lightweight
        resolver.  The contents of <emphasis>Section 6</emphasis> are
        organized as in a reference manual to aid in the ongoing
        maintenance of the software. <emphasis>Section 7</emphasis> addresses
        security considerations, and
        <emphasis>Section 8</emphasis> contains troubleshooting help. The
        main body of the document is followed by several
95
96
        <emphasis>appendices</emphasis> which contain useful reference
        information, such as a <emphasis>bibliography</emphasis> and
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        historic information related to <acronym>BIND</acronym>
        and the Domain Name
        System.
      </para>
    </sect1>
    <sect1>
      <title>Conventions Used in This Document</title>

      <para>
        In this document, we use the following general typographic
        conventions:
      </para>

      <informaltable>
        <tgroup cols="2">
          <colspec colname="1" colnum="1" colwidth="3.000in"/>
          <colspec colname="2" colnum="2" colwidth="2.625in"/>
114
          <tbody>
115
            <row>
116
117
118
119
120
121
122
123
124
125
              <entry colname="1">
                <para>
                  <emphasis>To describe:</emphasis>
                </para>
              </entry>
              <entry colname="2">
                <para>
                  <emphasis>We use the style:</emphasis>
                </para>
              </entry>
126
            </row>
127
            <row>
128
129
130
131
132
133
134
135
136
137
138
              <entry colname="1">
                <para>
                  a pathname, filename, URL, hostname,
                  mailing list name, or new term or concept
                </para>
              </entry>
              <entry colname="2">
                <para>
                  <filename>Fixed width</filename>
                </para>
              </entry>
139
            </row>
140
            <row>
141
142
143
144
145
146
147
148
149
150
151
              <entry colname="1">
                <para>
                  literal user
                  input
                </para>
              </entry>
              <entry colname="2">
                <para>
                  <userinput>Fixed Width Bold</userinput>
                </para>
              </entry>
152
            </row>
153
            <row>
154
155
156
157
158
159
160
161
162
163
              <entry colname="1">
                <para>
                  program output
                </para>
              </entry>
              <entry colname="2">
                <para>
                  <computeroutput>Fixed Width</computeroutput>
                </para>
              </entry>
164
165
166
            </row>
          </tbody>
        </tgroup>
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
      </informaltable>

      <para>
        The following conventions are used in descriptions of the
        <acronym>BIND</acronym> configuration file:<informaltable colsep="0" frame="all" rowsep="0">
                  <tgroup cols="2" colsep="0" rowsep="0" tgroupstyle="2Level-table">
                      <colspec colname="1" colnum="1" colsep="0" colwidth="3.000in"/>
            <colspec colname="2" colnum="2" colsep="0" colwidth="2.625in"/>
            <tbody>
              <row rowsep="0">
                <entry colname="1" colsep="1" rowsep="1">
                  <para>
                    <emphasis>To describe:</emphasis>
                  </para>
                </entry>
                <entry colname="2" rowsep="1">
                  <para>
                    <emphasis>We use the style:</emphasis>
                  </para>
                </entry>
              </row>
              <row rowsep="0">
                <entry colname="1" colsep="1" rowsep="1">
                  <para>
                    keywords
                  </para>
                </entry>
                <entry colname="2" rowsep="1">
                  <para>
                    <literal>Fixed Width</literal>
                  </para>
                </entry>
              </row>
              <row rowsep="0">
                <entry colname="1" colsep="1" rowsep="1">
                  <para>
                    variables
                  </para>
                </entry>
                <entry colname="2" rowsep="1">
                  <para>
                    <varname>Fixed Width</varname>
                  </para>
                </entry>
              </row>
              <row rowsep="0">
                <entry colname="1" colsep="1">
                  <para>
                    Optional input
                  </para>
                </entry>
                <entry colname="2">
                  <para>
                    <optional>Text is enclosed in square brackets</optional>
                  </para>
                </entry>
              </row>
            </tbody>
          </tgroup>
        </informaltable>
      </para>
    </sect1>
    <sect1>
      <title>The Domain Name System (<acronym>DNS</acronym>)</title>
      <para>
        The purpose of this document is to explain the installation
233
234
        and upkeep of the <acronym>BIND</acronym> (Berkeley Internet
	Name Domain) software package, and we
235
236
237
238
239
240
241
242
        begin by reviewing the fundamentals of the Domain Name System
        (<acronym>DNS</acronym>) as they relate to <acronym>BIND</acronym>.
      </para>

      <sect2>
        <title>DNS Fundamentals</title>

        <para>
243
          The Domain Name System (DNS) is a hierarchical, distributed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
          database.  It stores information for mapping Internet host names to
          IP
          addresses and vice versa, mail routing information, and other data
          used by Internet applications.
        </para>

        <para>
          Clients look up information in the DNS by calling a
          <emphasis>resolver</emphasis> library, which sends queries to one or
          more <emphasis>name servers</emphasis> and interprets the responses.
          The <acronym>BIND</acronym> 9 software distribution
          contains a
          name server, <command>named</command>, and two resolver
          libraries, <command>liblwres</command> and <command>libbind</command>.
        </para>

        </sect2><sect2>
        <title>Domains and Domain Names</title>

        <para>
          The data stored in the DNS is identified by <emphasis>domain names</emphasis> that are organized as a tree according to
          organizational or administrative boundaries. Each node of the tree,
          called a <emphasis>domain</emphasis>, is given a label. The domain
          name of the
          node is the concatenation of all the labels on the path from the
          node to the <emphasis>root</emphasis> node.  This is represented
          in written form as a string of labels listed from right to left and
          separated by dots. A label need only be unique within its parent
          domain.
        </para>

        <para>
          For example, a domain name for a host at the
          company <emphasis>Example, Inc.</emphasis> could be
278
          <literal>ourhost.example.com</literal>,
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
          where <literal>com</literal> is the
          top level domain to which
          <literal>ourhost.example.com</literal> belongs,
          <literal>example</literal> is
          a subdomain of <literal>com</literal>, and
          <literal>ourhost</literal> is the
          name of the host.
        </para>

        <para>
          For administrative purposes, the name space is partitioned into
          areas called <emphasis>zones</emphasis>, each starting at a node and
          extending down to the leaf nodes or to nodes where other zones
          start.
          The data for each zone is stored in a <emphasis>name server</emphasis>, which answers queries about the zone using the
          <emphasis>DNS protocol</emphasis>.
        </para>

        <para>
          The data associated with each domain name is stored in the
          form of <emphasis>resource records</emphasis> (<acronym>RR</acronym>s).
          Some of the supported resource record types are described in
          <xref linkend="types_of_resource_records_and_when_to_use_them"/>.
        </para>

        <para>
          For more detailed information about the design of the DNS and
          the DNS protocol, please refer to the standards documents listed in
          <xref linkend="rfcs"/>.
        </para>
      </sect2>

      <sect2>
        <title>Zones</title>
        <para>
          To properly operate a name server, it is important to understand
          the difference between a <emphasis>zone</emphasis>
          and a <emphasis>domain</emphasis>.
        </para>

        <para>
320
          As stated previously, a zone is a point of delegation in
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
          the <acronym>DNS</acronym> tree. A zone consists of
          those contiguous parts of the domain
          tree for which a name server has complete information and over which
          it has authority. It contains all domain names from a certain point
          downward in the domain tree except those which are delegated to
          other zones. A delegation point is marked by one or more
          <emphasis>NS records</emphasis> in the
          parent zone, which should be matched by equivalent NS records at
          the root of the delegated zone.
        </para>

        <para>
          For instance, consider the <literal>example.com</literal>
          domain which includes names
          such as <literal>host.aaa.example.com</literal> and
          <literal>host.bbb.example.com</literal> even though
          the <literal>example.com</literal> zone includes
          only delegations for the <literal>aaa.example.com</literal> and
          <literal>bbb.example.com</literal> zones.  A zone can
          map
          exactly to a single domain, but could also include only part of a
          domain, the rest of which could be delegated to other
          name servers. Every name in the <acronym>DNS</acronym>
          tree is a
          <emphasis>domain</emphasis>, even if it is
          <emphasis>terminal</emphasis>, that is, has no
          <emphasis>subdomains</emphasis>.  Every subdomain is a domain and
          every domain except the root is also a subdomain. The terminology is
          not intuitive and we suggest that you read RFCs 1033, 1034 and 1035
          to
          gain a complete understanding of this difficult and subtle
          topic.
        </para>

        <para>
          Though <acronym>BIND</acronym> is called a "domain name
          server",
          it deals primarily in terms of zones. The master and slave
          declarations in the <filename>named.conf</filename> file
          specify
          zones, not domains. When you ask some other site if it is willing to
          be a slave server for your <emphasis>domain</emphasis>, you are
          actually asking for slave service for some collection of zones.
        </para>
      </sect2>

      <sect2>
        <title>Authoritative Name Servers</title>

        <para>
          Each zone is served by at least
          one <emphasis>authoritative name server</emphasis>,
          which contains the complete data for the zone.
          To make the DNS tolerant of server and network failures,
375
376
          most zones have two or more authoritative servers, on
          different networks.
377
378
379
380
381
382
383
384
385
386
387
388
389
        </para>

        <para>
          Responses from authoritative servers have the "authoritative
          answer" (AA) bit set in the response packets.  This makes them
          easy to identify when debugging DNS configurations using tools like
          <command>dig</command> (<xref linkend="diagnostic_tools"/>).
        </para>

        <sect3>
          <title>The Primary Master</title>

          <para>
390
391
392
393
394
395
396
397
398
            The authoritative server where the master copy of the zone
            data is maintained is called the
	    <emphasis>primary master</emphasis> server, or simply the
            <emphasis>primary</emphasis>.  Typically it loads the zone
            contents from some local file edited by humans or perhaps
            generated mechanically from some other local file which is
            edited by humans.  This file is called the
	    <emphasis>zone file</emphasis> or
	    <emphasis>master file</emphasis>.
399
          </para>
400
401
402
403
404
405

	  <para>
	    In some cases, however, the master file may not be edited
	    by humans at all, but may instead be the result of
	    <emphasis>dynamic update</emphasis> operations.
	  </para>
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
        </sect3>

        <sect3>
          <title>Slave Servers</title>
          <para>
            The other authoritative servers, the <emphasis>slave</emphasis>
            servers (also known as <emphasis>secondary</emphasis> servers)
            load
            the zone contents from another server using a replication process
            known as a <emphasis>zone transfer</emphasis>.  Typically the data
            are
            transferred directly from the primary master, but it is also
            possible
            to transfer it from another slave.  In other words, a slave server
            may itself act as a master to a subordinate slave server.
          </para>
        </sect3>

        <sect3>
          <title>Stealth Servers</title>

          <para>
            Usually all of the zone's authoritative servers are listed in
            NS records in the parent zone.  These NS records constitute
            a <emphasis>delegation</emphasis> of the zone from the parent.
            The authoritative servers are also listed in the zone file itself,
            at the <emphasis>top level</emphasis> or <emphasis>apex</emphasis>
            of the zone.  You can list servers in the zone's top-level NS
            records that are not in the parent's NS delegation, but you cannot
            list servers in the parent's delegation that are not present at
            the zone's top level.
          </para>

          <para>
            A <emphasis>stealth server</emphasis> is a server that is
            authoritative for a zone but is not listed in that zone's NS
            records.  Stealth servers can be used for keeping a local copy of
            a
            zone to speed up access to the zone's records or to make sure that
            the
            zone is available even if all the "official" servers for the zone
            are
            inaccessible.
          </para>

          <para>
            A configuration where the primary master server itself is a
            stealth server is often referred to as a "hidden primary"
            configuration.  One use for this configuration is when the primary
            master
            is behind a firewall and therefore unable to communicate directly
            with the outside world.
          </para>

        </sect3>

      </sect2>
      <sect2>

        <title>Caching Name Servers</title>

467
	<!--
468
	  - Terminology here is inconsistent.  Probably ought to
469
470
471
472
	  - convert to using "recursive name server" everywhere
	  - with just a note about "caching" terminology.
	  -->

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
        <para>
          The resolver libraries provided by most operating systems are
          <emphasis>stub resolvers</emphasis>, meaning that they are not
          capable of
          performing the full DNS resolution process by themselves by talking
          directly to the authoritative servers.  Instead, they rely on a
          local
          name server to perform the resolution on their behalf.  Such a
          server
          is called a <emphasis>recursive</emphasis> name server; it performs
          <emphasis>recursive lookups</emphasis> for local clients.
        </para>

        <para>
          To improve performance, recursive servers cache the results of
          the lookups they perform.  Since the processes of recursion and
          caching are intimately connected, the terms
          <emphasis>recursive server</emphasis> and
          <emphasis>caching server</emphasis> are often used synonymously.
        </para>

        <para>
          The length of time for which a record may be retained in
Mark Andrews's avatar
Mark Andrews committed
496
          the cache of a caching name server is controlled by the
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
          Time To Live (TTL) field associated with each resource record.
        </para>

        <sect3>
          <title>Forwarding</title>

          <para>
            Even a caching name server does not necessarily perform
            the complete recursive lookup itself.  Instead, it can
            <emphasis>forward</emphasis> some or all of the queries
            that it cannot satisfy from its cache to another caching name
            server,
            commonly referred to as a <emphasis>forwarder</emphasis>.
          </para>

          <para>
            There may be one or more forwarders,
            and they are queried in turn until the list is exhausted or an
            answer
            is found. Forwarders are typically used when you do not
            wish all the servers at a given site to interact directly with the
            rest of
            the Internet servers. A typical scenario would involve a number
            of internal <acronym>DNS</acronym> servers and an
            Internet firewall. Servers unable
            to pass packets through the firewall would forward to the server
            that can do it, and that server would query the Internet <acronym>DNS</acronym> servers
524
            on the internal server's behalf.
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
          </para>
        </sect3>

      </sect2>

      <sect2>
        <title>Name Servers in Multiple Roles</title>

        <para>
          The <acronym>BIND</acronym> name server can
          simultaneously act as
          a master for some zones, a slave for other zones, and as a caching
          (recursive) server for a set of local clients.
        </para>

        <para>
          However, since the functions of authoritative name service
          and caching/recursive name service are logically separate, it is
          often advantageous to run them on separate server machines.

          A server that only provides authoritative name service
          (an <emphasis>authoritative-only</emphasis> server) can run with
          recursion disabled, improving reliability and security.

          A server that is not authoritative for any zones and only provides
          recursive service to local
          clients (a <emphasis>caching-only</emphasis> server)
          does not need to be reachable from the Internet at large and can
          be placed inside a firewall.
        </para>

      </sect2>
    </sect1>

  </chapter>

  <chapter id="Bv9ARM.ch02">
    <title><acronym>BIND</acronym> Resource Requirements</title>

    <sect1>
      <title>Hardware requirements</title>

      <para>
        <acronym>DNS</acronym> hardware requirements have
        traditionally been quite modest.
        For many installations, servers that have been pensioned off from
        active duty have performed admirably as <acronym>DNS</acronym> servers.
      </para>
      <para>
574
        The DNSSEC features of <acronym>BIND</acronym> 9
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
        may prove to be quite
        CPU intensive however, so organizations that make heavy use of these
        features may wish to consider larger systems for these applications.
        <acronym>BIND</acronym> 9 is fully multithreaded, allowing
        full utilization of
        multiprocessor systems for installations that need it.
      </para>
    </sect1>
    <sect1>
      <title>CPU Requirements</title>
      <para>
        CPU requirements for <acronym>BIND</acronym> 9 range from
        i486-class machines
        for serving of static zones without caching, to enterprise-class
        machines if you intend to process many dynamic updates and DNSSEC
        signed zones, serving many thousands of queries per second.
      </para>
    </sect1>

    <sect1>
      <title>Memory Requirements</title>
      <para>
        The memory of the server has to be large enough to fit the
        cache and zones loaded off disk.  The <command>max-cache-size</command>
        option can be used to limit the amount of memory used by the cache,
        at the expense of reducing cache hit rates and causing more <acronym>DNS</acronym>
        traffic.
        Additionally, if additional section caching
        (<xref linkend="acache"/>) is enabled,
Mark Andrews's avatar
Mark Andrews committed
604
        the <command>max-acache-size</command> option can be used to
605
606
607
608
609
610
611
612
613
614
        limit the amount
        of memory used by the mechanism.
        It is still good practice to have enough memory to load
        all zone and cache data into memory &mdash; unfortunately, the best
        way
        to determine this for a given installation is to watch the name server
        in operation. After a few weeks the server process should reach
        a relatively stable size where entries are expiring from the cache as
        fast as they are being inserted.
      </para>
615
616
617
618
      <!--
        - Add something here about leaving overhead for attacks?
	- How much overhead?  Percentage?
        -->
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
    </sect1>

    <sect1>
      <title>Name Server Intensive Environment Issues</title>
      <para>
        For name server intensive environments, there are two alternative
        configurations that may be used. The first is where clients and
        any second-level internal name servers query a main name server, which
        has enough memory to build a large cache. This approach minimizes
        the bandwidth used by external name lookups. The second alternative
        is to set up second-level internal name servers to make queries
        independently.
        In this configuration, none of the individual machines needs to
        have as much memory or CPU power as in the first alternative, but
        this has the disadvantage of making many more external queries,
        as none of the name servers share their cached data.
      </para>
    </sect1>

    <sect1>
      <title>Supported Operating Systems</title>
      <para>
        ISC <acronym>BIND</acronym> 9 compiles and runs on a large
        number
643
        of Unix-like operating systems and on NT-derived versions of
644
        Microsoft Windows such as Windows 2000 and Windows XP.  For an
645
646
647
648
649
650
651
652
653
654
655
656
        up-to-date
        list of supported systems, see the README file in the top level
        directory
        of the BIND 9 source distribution.
      </para>
    </sect1>
  </chapter>

  <chapter id="Bv9ARM.ch03">
    <title>Name Server Configuration</title>
    <para>
      In this section we provide some suggested configurations along
657
658
      with guidelines for their use.  We suggest reasonable values for
      certain option settings.
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
    </para>

    <sect1 id="sample_configuration">
      <title>Sample Configurations</title>
      <sect2>
        <title>A Caching-only Name Server</title>
        <para>
          The following sample configuration is appropriate for a caching-only
          name server for use by clients internal to a corporation.  All
          queries
          from outside clients are refused using the <command>allow-query</command>
          option.  Alternatively, the same effect could be achieved using
          suitable
          firewall rules.
        </para>
674
675

<programlisting>
676
// Two corporate subnets we wish to allow queries from.
677
acl corpnets { 192.168.4.0/24; 192.168.7.0/24; };
678
options {
679
     directory "/etc/namedb";           // Working directory
680
     allow-query { corpnets; };
681
682
683
684
685
686
687
688
};
// Provide a reverse mapping for the loopback address 127.0.0.1
zone "0.0.127.in-addr.arpa" {
     type master;
     file "localhost.rev";
     notify no;
};
</programlisting>
689

690
691
692
693
694
695
696
697
698
      </sect2>

      <sect2>
        <title>An Authoritative-only Name Server</title>
        <para>
          This sample configuration is for an authoritative-only server
          that is the master server for "<filename>example.com</filename>"
          and a slave for the subdomain "<filename>eng.example.com</filename>".
        </para>
699
700

<programlisting>
701
options {
702
     directory "/etc/namedb";           // Working directory
703
     allow-query-cache { none; };       // Do not allow access to cache
704
705
     allow-query { any; };              // This is the default
     recursion no;                      // Do not provide recursive service
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
};

// Provide a reverse mapping for the loopback address 127.0.0.1
zone "0.0.127.in-addr.arpa" {
     type master;
     file "localhost.rev";
     notify no;
};
// We are the master server for example.com
zone "example.com" {
     type master;
     file "example.com.db";
     // IP addresses of slave servers allowed to transfer example.com
     allow-transfer {
          192.168.4.14;
          192.168.5.53;
     };
};
// We are a slave server for eng.example.com
zone "eng.example.com" {
     type slave;
     file "eng.example.com.bk";
     // IP address of eng.example.com master server
     masters { 192.168.4.12; };
};
</programlisting>
732

733
734
735
736
737
      </sect2>
    </sect1>

    <sect1>
      <title>Load Balancing</title>
738
739
740
741
      <!--
        - Add explanation of why load balancing is fragile at best
	- and completely pointless in the general case.
        -->
742
743
744

      <para>
        A primitive form of load balancing can be achieved in
745
746
        the <acronym>DNS</acronym> by using multiple records
	(such as multiple A records) for one name.
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
      </para>

      <para>
        For example, if you have three WWW servers with network addresses
        of 10.0.0.1, 10.0.0.2 and 10.0.0.3, a set of records such as the
        following means that clients will connect to each machine one third
        of the time:
      </para>

      <informaltable colsep="0" rowsep="0">
        <tgroup cols="5" colsep="0" rowsep="0" tgroupstyle="2Level-table">
          <colspec colname="1" colnum="1" colsep="0" colwidth="0.875in"/>
          <colspec colname="2" colnum="2" colsep="0" colwidth="0.500in"/>
          <colspec colname="3" colnum="3" colsep="0" colwidth="0.750in"/>
          <colspec colname="4" colnum="4" colsep="0" colwidth="0.750in"/>
          <colspec colname="5" colnum="5" colsep="0" colwidth="2.028in"/>
          <tbody>
            <row rowsep="0">
              <entry colname="1">
                <para>
                  Name
                </para>
              </entry>
              <entry colname="2">
                <para>
                  TTL
                </para>
              </entry>
              <entry colname="3">
                <para>
                  CLASS
                </para>
              </entry>
              <entry colname="4">
                <para>
                  TYPE
                </para>
              </entry>
              <entry colname="5">
                <para>
                  Resource Record (RR) Data
                </para>
              </entry>
            </row>
            <row rowsep="0">
              <entry colname="1">
                <para>
                  <literal>www</literal>
                </para>
              </entry>
              <entry colname="2">
                <para>
                  <literal>600</literal>
                </para>
              </entry>
              <entry colname="3">
                <para>
                  <literal>IN</literal>
                </para>
              </entry>
              <entry colname="4">
                <para>
                  <literal>A</literal>
                </para>
              </entry>
              <entry colname="5">
                <para>
                  <literal>10.0.0.1</literal>
                </para>
              </entry>
            </row>
            <row rowsep="0">
              <entry colname="1">
                <para/>
              </entry>
              <entry colname="2">
                <para>
                  <literal>600</literal>
                </para>
              </entry>
              <entry colname="3">
                <para>
                  <literal>IN</literal>
                </para>
              </entry>
              <entry colname="4">
                <para>
                  <literal>A</literal>
                </para>
              </entry>
              <entry colname="5">
                <para>
                  <literal>10.0.0.2</literal>
                </para>
              </entry>
            </row>
            <row rowsep="0">
              <entry colname="1">
                <para/>
              </entry>
              <entry colname="2">
                <para>
                  <literal>600</literal>
                </para>
              </entry>
              <entry colname="3">
                <para>
                  <literal>IN</literal>
                </para>
              </entry>
              <entry colname="4">
                <para>
                  <literal>A</literal>
                </para>
              </entry>
              <entry colname="5">
                <para>
                  <literal>10.0.0.3</literal>
                </para>
              </entry>
            </row>
          </tbody>
        </tgroup>
      </informaltable>
      <para>
        When a resolver queries for these records, <acronym>BIND</acronym> will rotate
        them and respond to the query with the records in a different
        order.  In the example above, clients will randomly receive
        records in the order 1, 2, 3; 2, 3, 1; and 3, 1, 2. Most clients
        will use the first record returned and discard the rest.
      </para>
      <para>
        For more detail on ordering responses, check the
        <command>rrset-order</command> substatement in the
        <command>options</command> statement, see
        <xref endterm="rrset_ordering_title" linkend="rrset_ordering"/>.
      </para>

    </sect1>

    <sect1>
      <title>Name Server Operations</title>

      <sect2>
        <title>Tools for Use With the Name Server Daemon</title>
        <para>
893
894
895
896
          This section describes several indispensable diagnostic,
          administrative and monitoring tools available to the system
          administrator for controlling and debugging the name server
          daemon.
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
        </para>
        <sect3 id="diagnostic_tools">
          <title>Diagnostic Tools</title>
          <para>
            The <command>dig</command>, <command>host</command>, and
            <command>nslookup</command> programs are all command
            line tools
            for manually querying name servers.  They differ in style and
            output format.
          </para>

          <variablelist>
            <varlistentry>
              <term id="dig"><command>dig</command></term>
              <listitem>
                <para>
                  The domain information groper (<command>dig</command>)
                  is the most versatile and complete of these lookup tools.
                  It has two modes: simple interactive
                  mode for a single query, and batch mode which executes a
                  query for
                  each in a list of several query lines. All query options are
                  accessible
                  from the command line.
                </para>
                <cmdsynopsis label="Usage">
                  <command>dig</command>
                  <arg>@<replaceable>server</replaceable></arg>
                  <arg choice="plain"><replaceable>domain</replaceable></arg>
                  <arg><replaceable>query-type</replaceable></arg>
                  <arg><replaceable>query-class</replaceable></arg>
                  <arg>+<replaceable>query-option</replaceable></arg>
                  <arg>-<replaceable>dig-option</replaceable></arg>
                  <arg>%<replaceable>comment</replaceable></arg>
                </cmdsynopsis>
                <para>
                  The usual simple use of dig will take the form
                </para>
                <simpara>
                  <command>dig @server domain query-type query-class</command>
                </simpara>
                <para>
                  For more information and a list of available commands and
                  options, see the <command>dig</command> man
                  page.
                </para>
              </listitem>
            </varlistentry>

            <varlistentry>
              <term><command>host</command></term>
              <listitem>
                <para>
                  The <command>host</command> utility emphasizes
                  simplicity
                  and ease of use.  By default, it converts
                  between host names and Internet addresses, but its
                  functionality
                  can be extended with the use of options.
                </para>
                <cmdsynopsis label="Usage">
                  <command>host</command>
959
                  <arg>-aCdlnrsTwv</arg>
960
961
962
963
964
                  <arg>-c <replaceable>class</replaceable></arg>
                  <arg>-N <replaceable>ndots</replaceable></arg>
                  <arg>-t <replaceable>type</replaceable></arg>
                  <arg>-W <replaceable>timeout</replaceable></arg>
                  <arg>-R <replaceable>retries</replaceable></arg>
965
966
967
                  <arg>-m <replaceable>flag</replaceable></arg>
		  <arg>-4</arg>
		  <arg>-6</arg>
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
                  <arg choice="plain"><replaceable>hostname</replaceable></arg>
                  <arg><replaceable>server</replaceable></arg>
                </cmdsynopsis>
                <para>
                  For more information and a list of available commands and
                  options, see the <command>host</command> man
                  page.
                </para>
              </listitem>
            </varlistentry>

            <varlistentry>
              <term><command>nslookup</command></term>
              <listitem>
                <para><command>nslookup</command>
		  has two modes: interactive and
                  non-interactive. Interactive mode allows the user to
                  query name servers for information about various
                  hosts and domains or to print a list of hosts in a
                  domain. Non-interactive mode is used to print just
                  the name and requested information for a host or
                  domain.
                </para>
                <cmdsynopsis label="Usage">
                  <command>nslookup</command>
                  <arg rep="repeat">-option</arg>
                  <group>
                    <arg><replaceable>host-to-find</replaceable></arg>
                    <arg>- <arg>server</arg></arg>
                  </group>
                </cmdsynopsis>
                <para>
                  Interactive mode is entered when no arguments are given (the
                  default name server will be used) or when the first argument
                  is a
                  hyphen (`-') and the second argument is the host name or
                  Internet address
                  of a name server.
                </para>
                <para>
                  Non-interactive mode is used when the name or Internet
                  address
                  of the host to be looked up is given as the first argument.
                  The
                  optional second argument specifies the host name or address
                  of a name server.
                </para>
                <para>
                  Due to its arcane user interface and frequently inconsistent
                  behavior, we do not recommend the use of <command>nslookup</command>.
                  Use <command>dig</command> instead.
                </para>
              </listitem>

            </varlistentry>
          </variablelist>
        </sect3>

        <sect3 id="admin_tools">
          <title>Administrative Tools</title>
          <para>
            Administrative tools play an integral part in the management
            of a server.
          </para>
          <variablelist>
            <varlistentry id="named-checkconf" xreflabel="Named Configuration Checking application">

              <term><command>named-checkconf</command></term>
              <listitem>
                <para>
                  The <command>named-checkconf</command> program
                  checks the syntax of a <filename>named.conf</filename> file.
                </para>
                <cmdsynopsis label="Usage">
                  <command>named-checkconf</command>
                  <arg>-jvz</arg>
                  <arg>-t <replaceable>directory</replaceable></arg>
                  <arg><replaceable>filename</replaceable></arg>
                </cmdsynopsis>
              </listitem>
            </varlistentry>
            <varlistentry id="named-checkzone" xreflabel="Zone Checking application">

              <term><command>named-checkzone</command></term>
              <listitem>
                <para>
                  The <command>named-checkzone</command> program
                  checks a master file for
                  syntax and consistency.
                </para>
                <cmdsynopsis label="Usage">
                  <command>named-checkzone</command>
                  <arg>-djqvD</arg>
                  <arg>-c <replaceable>class</replaceable></arg>
                  <arg>-o <replaceable>output</replaceable></arg>
                  <arg>-t <replaceable>directory</replaceable></arg>
                  <arg>-w <replaceable>directory</replaceable></arg>
                  <arg>-k <replaceable>(ignore|warn|fail)</replaceable></arg>
                  <arg>-n <replaceable>(ignore|warn|fail)</replaceable></arg>
                  <arg>-W <replaceable>(ignore|warn)</replaceable></arg>
                  <arg choice="plain"><replaceable>zone</replaceable></arg>
                  <arg><replaceable>filename</replaceable></arg>
                </cmdsynopsis>
              </listitem>
            </varlistentry>
Jeremy Reed's avatar
Jeremy Reed committed
1073
	    <varlistentry id="named-compilezone" xreflabel="Zone Compilation application">
1074
1075
1076
1077
1078
1079
1080
	      <term><command>named-compilezone</command></term>
	      <listitem>
		<para>
		  Similar to <command>named-checkzone,</command> but
		  it always dumps the zone content to a specified file
		  (typically in a different format).
		</para>
Mark Andrews's avatar
Mark Andrews committed
1081
	      </listitem>
1082
	    </varlistentry>
1083
1084
1085
1086
1087
1088
1089
1090
1091
            <varlistentry id="rndc" xreflabel="Remote Name Daemon Control application">

              <term><command>rndc</command></term>
              <listitem>
                <para>
                  The remote name daemon control
                  (<command>rndc</command>) program allows the
                  system
                  administrator to control the operation of a name server.
1092
1093
1094
1095
1096
1097
                  Since <acronym>BIND</acronym> 9.2, <command>rndc</command>
                  supports all the commands of the BIND 8 <command>ndc</command>
                  utility except <command>ndc start</command> and
                  <command>ndc restart</command>, which were also
                  not supported in <command>ndc</command>'s
                  channel mode.
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
                  If you run <command>rndc</command> without any
                  options
                  it will display a usage message as follows:
                </para>
                <cmdsynopsis label="Usage">
                  <command>rndc</command>
                  <arg>-c <replaceable>config</replaceable></arg>
                  <arg>-s <replaceable>server</replaceable></arg>
                  <arg>-p <replaceable>port</replaceable></arg>
                  <arg>-y <replaceable>key</replaceable></arg>
                  <arg choice="plain"><replaceable>command</replaceable></arg>
                  <arg rep="repeat"><replaceable>command</replaceable></arg>
                </cmdsynopsis>
Mark Andrews's avatar
Mark Andrews committed
1111
                <para>The <command>command</command>
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
		  is one of the following:
                </para>

                <variablelist>

                  <varlistentry>
                    <term><userinput>reload</userinput></term>
                    <listitem>
                      <para>
                        Reload configuration file and zones.
                      </para>
                    </listitem>
                  </varlistentry>

                  <varlistentry>
                    <term><userinput>reload <replaceable>zone</replaceable>
                        <optional><replaceable>class</replaceable>
1129
           <optional><replaceable>view</replaceable></optional></optional></userinput></term>
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
                    <listitem>
                      <para>
                        Reload the given zone.
                      </para>
                    </listitem>
                  </varlistentry>

                  <varlistentry>
                    <term><userinput>refresh <replaceable>zone</replaceable>
                        <optional><replaceable>class</replaceable>
           <optional><replaceable>view</replaceable></optional></optional></userinput></term>
                    <listitem>
                      <para>
                        Schedule zone maintenance for the given zone.
                      </para>
                    </listitem>
                  </varlistentry>
1147

1148
1149
1150
1151
                  <varlistentry>
                    <term><userinput>retransfer <replaceable>zone</replaceable>

                        <optional><replaceable>class</replaceable>
1152
           <optional><replaceable>view</replaceable></optional></optional></userinput></term>
1153
1154
1155
1156
1157
1158
1159
1160
                    <listitem>
                      <para>
                        Retransfer the given zone from the master.
                      </para>
                    </listitem>
                  </varlistentry>

                  <varlistentry>
1161

1162
1163
                    <term><userinput>freeze
                        <optional><replaceable>zone</replaceable>
1164
       <optional><replaceable>class</replaceable>
1165
           <optional><replaceable>view</replaceable></optional></optional></optional></userinput></term>
1166
1167
1168
                    <listitem>
                      <para>
                        Suspend updates to a dynamic zone.  If no zone is
Mark Andrews's avatar
Mark Andrews committed
1169
                        specified,
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
                        then all zones are suspended.  This allows manual
                        edits to be made to a zone normally updated by dynamic
                        update.  It
                        also causes changes in the journal file to be synced
                        into the master
                        and the journal file to be removed.  All dynamic
                        update attempts will
                        be refused while the zone is frozen.
                      </para>
                    </listitem>
                  </varlistentry>

                  <varlistentry>
                    <term><userinput>thaw
                        <optional><replaceable>zone</replaceable>
1185
       <optional><replaceable>class</replaceable>
1186
           <optional><replaceable>view</replaceable></optional></optional></optional></userinput></term>
1187
1188
1189
1190
                    <listitem>
                      <para>
                        Enable updates to a frozen dynamic zone.  If no zone
                        is
Mark Andrews's avatar
Mark Andrews committed
1191
                        specified, then all frozen zones are enabled.  This
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
                        causes
                        the server to reload the zone from disk, and
                        re-enables dynamic updates
                        after the load has completed.  After a zone is thawed,
                        dynamic updates
                        will no longer be refused.
                      </para>
                    </listitem>
                  </varlistentry>

                  <varlistentry>
                    <term><userinput>notify <replaceable>zone</replaceable>
                        <optional><replaceable>class</replaceable>
1205
           <optional><replaceable>view</replaceable></optional></optional></userinput></term>
1206
1207
                    <listitem>
                      <para>
1208
                        Resend NOTIFY messages for the zone.
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
                      </para>
                    </listitem>
                  </varlistentry>

                  <varlistentry>
                    <term><userinput>reconfig</userinput></term>
                    <listitem>
                      <para>
                        Reload the configuration file and load new zones,
                        but do not reload existing zone files even if they
                        have changed.
                        This is faster than a full <command>reload</command> when there
                        is a large number of zones because it avoids the need
                        to examine the
                        modification times of the zones files.
                      </para>
                    </listitem>
                  </varlistentry>

                  <varlistentry>
                    <term><userinput>stats</userinput></term>
                    <listitem>
                      <para>
                        Write server statistics to the statistics file.
                      </para>
                    </listitem>
                  </varlistentry>

                  <varlistentry>
                    <term><userinput>querylog</userinput></term>
                    <listitem>
                      <para>
1241
                        Toggle query logging. Query logging can also be enabled
1242
                        by explicitly directing the <command>queries</command>
1243
1244
                        <command>category</command> to a
		        <command>channel</command> in the
1245
                        <command>logging</command> section of
1246
1247
1248
1249
                        <filename>named.conf</filename> or by specifying
			<command>querylog yes;</command> in the
			<command>options</command> section of
			<filename>named.conf</filename>.
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
                      </para>
                    </listitem>
                  </varlistentry>

                  <varlistentry>
                    <term><userinput>dumpdb
                        <optional>-all|-cache|-zone</optional>
                        <optional><replaceable>view ...</replaceable></optional></userinput></term>
                    <listitem>
                      <para>
Mark Andrews's avatar
Mark Andrews committed
1260
                        Dump the server's caches (default) and/or zones to
1261
1262
                        the
                        dump file for the specified views.  If no view is
Mark Andrews's avatar
Mark Andrews committed
1263
                        specified, all
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
                        views are dumped.
                      </para>
                    </listitem>
                  </varlistentry>

                  <varlistentry>
                    <term><userinput>stop <optional>-p</optional></userinput></term>
                    <listitem>
                      <para>
                        Stop the server, making sure any recent changes
                        made through dynamic update or IXFR are first saved to
1275
1276
                        the master files of the updated zones.
			If -p is specified named's process id is returned.
Mark Andrews's avatar
Mark Andrews committed
1277
			This allows an external process to determine when named
1278
			had completed stopping.
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
                      </para>
                    </listitem>
                  </varlistentry>

                  <varlistentry>
                    <term><userinput>halt <optional>-p</optional></userinput></term>
                    <listitem>
                      <para>
                        Stop the server immediately.  Recent changes
                        made through dynamic update or IXFR are not saved to
1289
1290
1291
                        the master files, but will be rolled forward from the
			journal files when the server is restarted.
			If -p is specified named's process id is returned.
Mark Andrews's avatar
Mark Andrews committed
1292
			This allows an external process to determine when named
1293
			had completed halting.
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
                      </para>
                    </listitem>
                  </varlistentry>

                  <varlistentry>
                    <term><userinput>trace</userinput></term>
                    <listitem>
                      <para>
                        Increment the servers debugging level by one.
                      </para>
                    </listitem>
                  </varlistentry>

                  <varlistentry>
                    <term><userinput>trace <replaceable>level</replaceable></userinput></term>
                    <listitem>
                      <para>
                        Sets the server's debugging level to an explicit
                        value.
                      </para>
                    </listitem>
                  </varlistentry>

                  <varlistentry>
                    <term><userinput>notrace</userinput></term>
                    <listitem>
                      <para>
                        Sets the server's debugging level to 0.
                      </para>
                    </listitem>
                  </varlistentry>

                  <varlistentry>
                    <term><userinput>flush</userinput></term>
                    <listitem>
                      <para>
                        Flushes the server's cache.
                      </para>
                    </listitem>
                  </varlistentry>

                  <varlistentry>
                    <term><userinput>flushname</userinput> <replaceable>name</replaceable></term>
                    <listitem>
                      <para>
                        Flushes the given name from the server's cache.
                      </para>
                    </listitem>
                  </varlistentry>

                  <varlistentry>
                    <term><userinput>status</userinput></term>
                    <listitem>
                      <para>
                        Display status of the server.
Mark Andrews's avatar
Mark Andrews committed
1349
                        Note that the number of zones includes the internal <command>bind/CH</command> zone
1350
                        and the default <command>./IN</command>
Mark Andrews's avatar
Mark Andrews committed
1351
                        hint zone if there is not an
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
                        explicit root zone configured.
                      </para>
                    </listitem>
                  </varlistentry>

                  <varlistentry>
                    <term><userinput>recursing</userinput></term>
                    <listitem>
                      <para>
                        Dump the list of queries named is currently recursing
                        on.
                      </para>
                    </listitem>
                  </varlistentry>

1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
                  <varlistentry>
                    <term><userinput>validation
                        <optional>on|off</optional>
                        <optional><replaceable>view ...</replaceable></optional>
                    </userinput></term>
                    <listitem>
                      <para>
                        Enable or disable DNSSEC validation.
                        Note <command>dnssec-enable</command> also needs to be
                        set to <userinput>yes</userinput> to be effective.
                        It defaults to enabled.
                      </para>
                    </listitem>
                  </varlistentry>

1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
                </variablelist>

                <para>
                  A configuration file is required, since all
                  communication with the server is authenticated with
                  digital signatures that rely on a shared secret, and
                  there is no way to provide that secret other than with a
                  configuration file.  The default location for the
                  <command>rndc</command> configuration file is
                  <filename>/etc/rndc.conf</filename>, but an
                  alternate
                  location can be specified with the <option>-c</option>
                  option.  If the configuration file is not found,
                  <command>rndc</command> will also look in
                  <filename>/etc/rndc.key</filename> (or whatever
                  <varname>sysconfdir</varname> was defined when
                  the <acronym>BIND</acronym> build was
                  configured).
                  The <filename>rndc.key</filename> file is
                  generated by
                  running <command>rndc-confgen -a</command> as
                  described in
                  <xref linkend="controls_statement_definition_and_usage"/>.
                </para>

                <para>
                  The format of the configuration file is similar to
                  that of <filename>named.conf</filename>, but
                  limited to
                  only four statements, the <command>options</command>,
                  <command>key</command>, <command>server</command> and
                  <command>include</command>
                  statements.  These statements are what associate the
                  secret keys to the servers with which they are meant to
                  be shared.  The order of statements is not
                  significant.
                </para>

                <para>
                  The <command>options</command> statement has
                  three clauses:
                  <command>default-server</command>, <command>default-key</command>,
                  and <command>default-port</command>.
                  <command>default-server</command> takes a
                  host name or address argument  and represents the server
                  that will
                  be contacted if no <option>-s</option>
                  option is provided on the command line.
                  <command>default-key</command> takes
                  the name of a key as its argument, as defined by a <command>key</command> statement.
                  <command>default-port</command> specifies the
                  port to which
                  <command>rndc</command> should connect if no
                  port is given on the command line or in a
                  <command>server</command> statement.
                </para>

                <para>
Mark Andrews's avatar
Mark Andrews committed
1440
                  The <command>key</command> statement defines a
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
                  key to be used
                  by <command>rndc</command> when authenticating
                  with
                  <command>named</command>.  Its syntax is
                  identical to the
                  <command>key</command> statement in named.conf.
                  The keyword <userinput>key</userinput> is
                  followed by a key name, which must be a valid
                  domain name, though it need not actually be hierarchical;
                  thus,
                  a string like "<userinput>rndc_key</userinput>" is a valid
                  name.
                  The <command>key</command> statement has two
                  clauses:
                  <command>algorithm</command> and <command>secret</command>.
                  While the configuration parser will accept any string as the
                  argument
                  to algorithm, currently only the string "<userinput>hmac-md5</userinput>"
1459
1460
                  has any meaning.  The secret is a base-64 encoded string
		  as specified in RFC 3548.
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
                </para>

                <para>
                  The <command>server</command> statement
                  associates a key
                  defined using the <command>key</command>
                  statement with a server.
                  The keyword <userinput>server</userinput> is followed by a
                  host name or address.  The <command>server</command> statement
                  has two clauses: <command>key</command> and <command>port</command>.
                  The <command>key</command> clause specifies the
                  name of the key
                  to be used when communicating with this server, and the
                  <command>port</command> clause can be used to
                  specify the port <command>rndc</command> should
                  connect
                  to on the server.
                </para>

                <para>
                  A sample minimal configuration file is as follows:
                </para>

1484
<programlisting>
1485
1486
1487
1488
1489
key rndc_key {
     algorithm "hmac-md5";
     secret "c3Ryb25nIGVub3VnaCBmb3IgYSBtYW4gYnV0IG1hZGUgZm9yIGEgd29tYW4K";
};
options {
1490
     default-server 127.0.0.1;
1491
1492
1493
     default-key    rndc_key;
};
</programlisting>
1494

1495
1496
1497
1498
                <para>
                  This file, if installed as <filename>/etc/rndc.conf</filename>,
                  would allow the command:
                </para>
Andreas Gustafsson's avatar
Andreas Gustafsson committed
1499

1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
                <para>
                  <prompt>$ </prompt><userinput>rndc reload</userinput>
                </para>

                <para>
                  to connect to 127.0.0.1 port 953 and cause the name server
                  to reload, if a name server on the local machine were
                  running with
                  following controls statements:
                </para>
Andreas Gustafsson's avatar
Andreas Gustafsson committed
1510
1511

<programlisting>
1512
controls {
1513
        inet 127.0.0.1 allow { localhost; } keys { rndc_key; };
1514
1515
1516
};
</programlisting>

1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
                <para>
                  and it had an identical key statement for
                  <literal>rndc_key</literal>.
                </para>

                <para>
                  Running the <command>rndc-confgen</command>
                  program will
                  conveniently create a <filename>rndc.conf</filename>
                  file for you, and also display the
                  corresponding <command>controls</command>
                  statement that you need to
                  add to <filename>named.conf</filename>.
                  Alternatively,
                  you can run <command>rndc-confgen -a</command>
                  to set up
                  a <filename>rndc.key</filename> file and not
                  modify
                  <filename>named.conf</filename> at all.
                </para>

              </listitem>
            </varlistentry>
          </variablelist>

        </sect3>
      </sect2>
      <sect2>

        <title>Signals</title>
        <para>
          Certain UNIX signals cause the name server to take specific
          actions, as described in the following table.  These signals can
          be sent using the <command>kill</command> command.
        </para>
        <informaltable frame="all">
          <tgroup cols="2">
            <colspec colname="1" colnum="1" colsep="0" colwidth="1.125in"/>
            <colspec colname="2" colnum="2" colsep="0" colwidth="4.000in"/>
            <tbody>
              <row rowsep="0">
                <entry colname="1">
                  <para><command>SIGHUP</command></para>
                </entry>
                <entry colname="2">
                  <para>
                    Causes the server to read <filename>named.conf</filename> and
                    reload the database.
                  </para>
                </entry>
              </row>
              <row rowsep="0">
                <entry colname="1">
                  <para><command>SIGTERM</command></para>
                </entry>
                <entry colname="2">
                  <para>
                    Causes the server to clean up and exit.
                  </para>
                </entry>
              </row>
              <row rowsep="0">
                <entry colname="1">
                  <para><command>SIGINT</command></para>
                </entry>
                <entry colname="2">
                  <para>
                    Causes the server to clean up and exit.
                  </para>
                </entry>
              </row>
            </tbody>
          </tgroup>
        </informaltable>
      </sect2>
    </sect1>
1593
1594
  </chapter>

1595
1596
1597
1598
1599
1600
1601
  <chapter id="Bv9ARM.ch04">
    <title>Advanced DNS Features</title>

    <sect1 id="notify">

      <title>Notify</title>
      <para>
1602
        <acronym>DNS</acronym> NOTIFY is a mechanism that allows master
1603
        servers to notify their slave servers of changes to a zone's data. In
1604
        response to a <command>NOTIFY</command> from a master server, the
1605
1606
1607
1608
1609
        slave will check to see that its version of the zone is the
        current version and, if not, initiate a zone transfer.
      </para>

      <para>
1610
        For more information about <acronym>DNS</acronym>
1611
1612
1613
1614
1615
1616
1617
        <command>NOTIFY</command>, see the description of the
        <command>notify</command> option in <xref linkend="boolean_options"/> and
        the description of the zone option <command>also-notify</command> in
        <xref linkend="zone_transfers"/>.  The <command>NOTIFY</command>
        protocol is specified in RFC 1996.
      </para>

1618
      <note>
Mark Andrews's avatar
Mark Andrews committed
1619
	As a slave zone can also be a master to other slaves, named,
1620
1621
1622
1623
1624
1625
        by default, sends <command>NOTIFY</command> messages for every zone
	it loads.  Specifying <command>notify master-only;</command> will
	cause named to only send <command>NOTIFY</command> for master
	zones that it loads.
      </note>

1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
    </sect1>

    <sect1 id="dynamic_update">
      <title>Dynamic Update</title>

      <para>
        Dynamic Update is a method for adding, replacing or deleting
        records in a master server by sending it a special form of DNS
        messages.  The format and meaning of these messages is specified
        in RFC 2136.
      </para>

      <para>
1639
1640
1641
1642
1643
1644
1645
1646
1647
	Dynamic update is enabled by including an
	<command>allow-update</command> or <command>update-policy</command>
	clause in the <command>zone</command> statement.  The
	<command>tkey-gssapi-credential</command> and
	<command>tkey-domain</command> clauses in the
	<command>options</command>        statement enable the
	server to negotiate keys that can be matched against those
	in <command>update-policy</command> or
	<command>allow-update</command>.
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
      </para>

      <para>
        Updating of secure zones (zones using DNSSEC) follows
        RFC 3007: RRSIG and NSEC records affected by updates are automatically
            regenerated by the server using an online zone key.
        Update authorization is based
        on transaction signatures and an explicit server policy.
      </para>

      <sect2 id="journal">
        <title>The journal file</title>

        <para>
          All changes made to a zone using dynamic update are stored
          in the zone's journal file.  This file is automatically created
          by the server when the first dynamic update takes place.
          The name of the journal file is formed by appending the extension
          <filename>.jnl</filename> to the name of the
          corresponding zone
          file unless specifically overridden.  The journal file is in a
          binary format and should not be edited manually.
        </para>

        <para>
          The server will also occasionally write ("dump")
          the complete contents of the updated zone to its zone file.
          This is not done immediately after
          each dynamic update, because that would be too slow when a large
          zone is updated frequently.  Instead, the dump is delayed by
          up to 15 minutes, allowing additional updates to take place.
        </para>

        <para>
          When a server is restarted after a shutdown or crash, it will replay
              the journal file to incorporate into the zone any updates that
          took
          place after the last zone dump.
        </para>

        <para>
          Changes that result from incoming incremental zone transfers are
          also
          journalled in a similar way.
        </para>

        <para>
          The zone files of dynamic zones cannot normally be edited by
          hand because they are not guaranteed to contain the most recent
Mark Andrews's avatar
Mark Andrews committed
1697
          dynamic changes &mdash; those are only in the journal file.
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
          The only way to ensure that the zone file of a dynamic zone
          is up to date is to run <command>rndc stop</command>.
        </para>

        <para>
          If you have to make changes to a dynamic zone
          manually, the following procedure will work: Disable dynamic updates
              to the zone using
          <command>rndc freeze <replaceable>zone</replaceable></command>.
          This will also remove the zone's <filename>.jnl</filename> file
          and update the master file.  Edit the zone file.  Run
1709
          <command>rndc thaw <replaceable>zone</replaceable></command>
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
          to reload the changed zone and re-enable dynamic updates.
        </para>

      </sect2>

    </sect1>

    <sect1 id="incremental_zone_transfers">
      <title>Incremental Zone Transfers (IXFR)</title>

      <para>
        The incremental zone transfer (IXFR) protocol is a way for
        slave servers to transfer only changed data, instead of having to
        transfer the entire zone. The IXFR protocol is specified in RFC
        1995. See <xref linkend="proposed_standards"/>.
      </para>

      <para>
        When acting as a master, <acronym>BIND</acronym> 9
        supports IXFR for those zones
        where the necessary change history information is available. These
        include master zones maintained by dynamic update and slave zones
        whose data was obtained by IXFR.  For manually maintained master
        zones, and for slave zones obtained by performing a full zone
        transfer (AXFR), IXFR is supported only if the option
        <command>ixfr-from-differences</command> is set
        to <userinput>yes</userinput>.
      </para>

      <para>
        When acting as a slave, <acronym>BIND</acronym> 9 will
        attempt to use IXFR unless
        it is explicitly disabled. For more information about disabling
        IXFR, see the description of the <command>request-ixfr</command> clause
        of the <command>server</command> statement.
      </para>
    </sect1>

    <sect1>
      <title>Split DNS</title>
      <para>
        Setting up different views, or visibility, of the DNS space to
1752
1753
1754
        internal and external resolvers is usually referred to as a
	<emphasis>Split DNS</emphasis> setup. There are several
        reasons an organization would want to set up its DNS this way.
1755
1756
1757
1758
1759
1760
1761
1762
1763
      </para>
      <para>
        One common reason for setting up a DNS system this way is
        to hide "internal" DNS information from "external" clients on the
        Internet. There is some debate as to whether or not this is actually
        useful.
        Internal DNS information leaks out in many ways (via email headers,
        for example) and most savvy "attackers" can find the information
        they need using other means.
1764
1765
1766
	However, since listing addresses of internal servers that
        external clients cannot possibly reach can result in
        connection delays and other annoyances, an organization may
1767
        choose to use a Split DNS to present a consistent view of itself
1768
        to the outside world.
1769
1770
1771
1772
1773
1774
1775
1776
      </para>
      <para>
        Another common reason for setting up a Split DNS system is
        to allow internal networks that are behind filters or in RFC 1918
        space (reserved IP space, as documented in RFC 1918) to resolve DNS
        on the Internet. Split DNS can also be used to allow mail from outside
        back in to the internal network.
      </para>
1777
1778
     <sect2>
      <title>Example split DNS setup</title>
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
      <para>
        Let's say a company named <emphasis>Example, Inc.</emphasis>
        (<literal>example.com</literal>)
        has several corporate sites that have an internal network with
        reserved
        Internet Protocol (IP) space and an external demilitarized zone (DMZ),
        or "outside" section of a network, that is available to the public.
      </para>
      <para>
        <emphasis>Example, Inc.</emphasis> wants its internal clients
        to be able to resolve external hostnames and to exchange mail with
        people on the outside. The company also wants its internal resolvers
        to have access to certain internal-only zones that are not available
        at all outside of the internal network.
      </para>
      <para>
        In order to accomplish this, the company will set up two sets
        of name servers. One set will be on the inside network (in the
        reserved
        IP space) and the other set will be on bastion hosts, which are
        "proxy"
        hosts that can talk to both sides of its network, in the DMZ.
      </para>
      <para>
        The internal servers will be configured to forward all queries,
        except queries for <filename>site1.internal</filename>, <filename>site2.internal</filename>, <filename>site1.example.com</filename>,
        and <filename>site2.example.com</filename>, to the servers
        in the
        DMZ. These internal servers will have complete sets of information
        for <filename>site1.example.com</filename>, <filename>site2.example.com</filename>,<emphasis/> <filename>site1.internal</filename>,
        and <filename>site2.internal</filename>.
      </para>
      <para>
        To protect the <filename>site1.internal</filename> and <filename>site2.internal</filename> domains,
        the internal name servers must be configured to disallow all queries
        to these domains from any external hosts, including the bastion
        hosts.
      </para>
      <para>
        The external servers, which are on the bastion hosts, will
        be configured to serve the "public" version of the <filename>site1</filename> and <filename>site2.example.com</filename> zones.
        This could include things such as the host records for public servers
        (<filename>www.example.com</filename> and <filename>ftp.example.com</filename>),
        and mail exchange (MX)  records (<filename>a.mx.example.com</filename> and <filename>b.mx.example.com</filename>).
      </para>
      <para>
        In addition, the public <filename>site1</filename> and <filename>site2.example.com</filename> zones
        should have special MX records that contain wildcard (`*') records
        pointing to the bastion hosts. This is needed because external mail
        servers do not have any other way of looking up how to deliver mail
        to those internal hosts. With the wildcard records, the mail will
        be delivered to the bastion host, which can then forward it on to
        internal hosts.
      </para>
      <para>
        Here's an example of a wildcard MX record:
      </para>
      <programlisting>*   IN MX 10 external1.example.com.</programlisting>
      <para>
        Now that they accept mail on behalf of anything in the internal
        network, the bastion hosts will need to know how to deliver mail
        to internal hosts. In order for this to work properly, the resolvers
        on
        the bastion hosts will need to be configured to point to the internal
        name servers for DNS resolution.
      </para>
      <para>
        Queries for internal hostnames will be answered by the internal
        servers, and queries for external hostnames will be forwarded back
        out to the DNS servers on the bastion hosts.
      </para>
      <para>
        In order for all this to work properly, internal clients will
        need to be configured to query <emphasis>only</emphasis> the internal
        name servers for DNS queries. This could also be enforced via
        selective
        filtering on the network.
      </para>
      <para>
        If everything has been set properly, <emphasis>Example, Inc.</emphasis>'s
        internal clients will now be able to:
      </para>
      <itemizedlist>
        <listitem>
          <simpara>
            Look up any hostnames in the <literal>site1</literal>
            and
            <literal>site2.example.com</literal> zones.
          </simpara>
        </listitem>
        <listitem>
          <simpara>
            Look up any hostnames in the <literal>site1.internal</literal> and
            <literal>site2.internal</literal> domains.
          </simpara>
        </listitem>
        <listitem>
          <simpara>Look up any hostnames on the Internet.</simpara>
        </listitem>
        <listitem>
Mark Andrews's avatar
Mark Andrews committed
1879
          <simpara>Exchange mail with both internal and external people.</simpara>
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
        </listitem>
      </itemizedlist>
      <para>
        Hosts on the Internet will be able to:
      </para>
      <itemizedlist>
        <listitem>
          <simpara>
            Look up any hostnames in the <literal>site1</literal>
            and
            <literal>site2.example.com</literal> zones.
          </simpara>
        </listitem>
        <listitem>
          <simpara>
            Exchange mail with anyone in the <literal>site1</literal> and
            <literal>site2.example.com</literal> zones.
          </simpara>
        </listitem>
      </itemizedlist>

      <para>
        Here is an example configuration for the setup we just
        described above. Note that this is only configuration information;
Mark Andrews's avatar
Mark Andrews committed
1904
        for information on how to configure your zone files, see <xref linkend="sample_configuration"/>.
1905
1906
1907
1908
1909
1910
      </para>

      <para>
        Internal DNS server config:
      </para>

1911
<programlisting>
1912
1913
1914

acl internals { 172.16.72.0/24; 192.168.1.0/24; };

1915
acl externals { <varname>bastion-ips-go-here</varname>; };
1916

1917
1918
1919
1920
options {
    ...
    ...
    forward only;
1921
    forwarders {                                // forward to external servers
1922
        <varname>bastion-ips-go-here</varname>;
1923
    };
1924
1925
1926
    allow-transfer { none; };                   // sample allow-transfer (no one)
    allow-query { internals; externals; };      // restrict query access
    allow-recursion { internals; };             // restrict recursion
1927
1928
1929
    ...
    ...
};
1930

1931
zone "site1.example.com" {                      // sample master zone
1932
1933
  type master;
  file "m/site1.example.com";
1934
1935
  forwarders { };                               // do normal iterative
                                                // resolution (do not forward)
1936
1937
1938
  allow-query { internals; externals; };
  allow-transfer { internals; };
};
1939

1940
zone "site2.example.com" {                      // sample slave zone
1941
1942
1943
1944
1945
1946
1947
  type slave;
  file "s/site2.example.com";
  masters { 172.16.72.3; };
  forwarders { };
  allow-query { internals; externals; };
  allow-transfer { internals; };
};
1948

1949
1950
1951
1952
1953
1954
1955
zone "site1.internal" {
  type master;
  file "m/site1.internal";
  forwarders { };
  allow-query { internals; };
  allow-transfer { internals; }
};
1956

1957
1958
1959
1960
1961
1962
1963
1964
1965
zone "site2.internal" {
  type slave;
  file "s/site2.internal";
  masters { 172.16.72.3; };
  forwarders { };
  allow-query { internals };
  allow-transfer { internals; }
};
</programlisting>
1966
1967
1968
1969
1970

      <para>
        External (bastion host) DNS server config:
      </para>

1971
<programlisting>
1972
1973
acl internals { 172.16.72.0/24; 192.168.1.0/24; };

1974
acl externals { bastion-ips-go-here; };
1975

1976
1977
1978
options {
  ...
  ...
1979
  allow-transfer { none; };                     // sample allow-transfer (no one)
1980
  allow-query { any; };                         // default query access
1981
  allow-query-cache { internals; externals; };  // restrict cache access
1982
  allow-recursion { internals; externals; };    // restrict recursion
1983
1984
1985
  ...
  ...
};
1986

1987
zone "site1.example.com" {                      // sample slave zone
1988
1989
1990
1991
  type master;
  file "m/site1.foo.com";
  allow-transfer { internals; externals; };
};
1992

1993
1994
1995
1996
1997
1998
1999
zone "site2.example.com" {
  type slave;
  file "s/site2.foo.com";
  masters { another_bastion_host_maybe; };
  allow-transfer { internals; externals; }
};
</programlisting>
2000
2001
2002
2003
2004
2005

      <para>
        In the <filename>resolv.conf</filename> (or equivalent) on
        the bastion host(s):
      </para>

2006
2007
2008
2009
2010
2011
<programlisting>
search ...
nameserver 172.16.72.2
nameserver 172.16.72.3
nameserver 172.16.72.4
</programlisting>
2012

2013
     </sect2>
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
    </sect1>
    <sect1 id="tsig">
      <title>TSIG</title>
      <para>
        This is a short guide to setting up Transaction SIGnatures
        (TSIG) based transaction security in <acronym>BIND</acronym>. It describes changes
        to the configuration file as well as what changes are required for
        different features, including the process of creating transaction
        keys and using transaction signatures with <acronym>BIND</acronym>.
      </para>
      <para>
        <acronym>BIND</acronym> primarily supports TSIG for server
        to server communication.
        This includes zone transfer, notify, and recursive query messages.
        Resolvers based on newer versions of <acronym>BIND</acronym> 8 have limited support
        for TSIG.
      </para>

      <para>
2033
2034
2035
        TSIG can also be useful for dynamic update. A primary
        server for a dynamic zone should control access to the dynamic
        update service, but IP-based access control is insufficient.
2036
2037
2038
        The cryptographic access control provided by TSIG
        is far superior. The <command>nsupdate</command>
        program supports TSIG via the <option>-k</option> and
2039
2040
        <option>-y</option> command line options or inline by use
	of the <command>key</command>.
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
      </para>

      <sect2>
        <title>Generate Shared Keys for Each Pair of Hosts</title>
        <para>
          A shared secret is generated to be shared between <emphasis>host1</emphasis> and <emphasis>host2</emphasis>.
          An arbitrary key name is chosen: "host1-host2.". The key name must
          be the same on both hosts.
        </para>
        <sect3>
          <title>Automatic Generation</title>
          <para>
Mark Andrews's avatar
Mark Andrews committed
2053
            The following command will generate a 128-bit (16 byte) HMAC-MD5
2054
2055
            key as described above. Longer keys are better, but shorter keys
            are easier to read. Note that the maximum key length is 512 bits;
Mark Andrews's avatar
Mark Andrews committed
2056
2057
            keys longer than that will be digested with MD5 to produce a
            128-bit key.
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
          </para>
          <para>
            <userinput>dnssec-keygen -a hmac-md5 -b 128 -n HOST host1-host2.</userinput>
          </para>
          <para>
            The key is in the file <filename>Khost1-host2.+157+00000.private</filename>.
            Nothing directly uses this file, but the base-64 encoded string
            following "<literal>Key:</literal>"
            can be extracted from the file and used as a shared secret:
          </para>
          <programlisting>Key: La/E5CjG9O+os1jq0a2jdA==</programlisting>
          <para>
            The string "<literal>La/E5CjG9O+os1jq0a2jdA==</literal>" can
            be used as the shared secret.
          </para>
        </sect3>
        <sect3>
          <title>Manual Generation</title>
          <para>
            The shared secret is simply a random sequence of bits, encoded
            in base-64. Most ASCII strings are valid base-64 strings (assuming
            the length is a multiple of 4 and only valid characters are used),
            so the shared secret can be manually generated.
          </para>
          <para>
            Also, a known string can be run through <command>mmencode</command> or
            a similar program to generate base-64 encoded data.
          </para>
        </sect3>
      </sect2>
      <sect2>
        <title>Copying the Shared Secret to Both Machines</title>
        <para>
          This is beyond the scope of DNS. A secure transport mechanism
          should be used. This could be secure FTP, ssh, telephone, etc.
        </para>
      </sect2>
      <sect2>
        <title>Informing the Servers of the Key's Existence</title>
        <para>
          Imagine <emphasis>host1</emphasis> and <emphasis>host 2</emphasis>
          are
          both servers. The following is added to each server's <filename>named.conf</filename> file:
        </para>

2103
2104
2105
2106
2107
2108
<programlisting>
key host1-host2. {
  algorithm hmac-md5;
  secret "La/E5CjG9O+os1jq0a2jdA==";
};
</programlisting>
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134

        <para>
          The algorithm, hmac-md5, is the only one supported by <acronym>BIND</acronym>.
          The secret is the one generated above. Since this is a secret, it
          is recommended that either <filename>named.conf</filename> be non-world
          readable, or the key directive be added to a non-world readable
          file that is included by
          <filename>named.conf</filename>.
        </para>
        <para>
          At this point, the key is recognized. This means that if the
          server receives a message signed by this key, it can verify the
          signature. If the signature is successfully verified, the
          response is signed by the same key.
        </para>
      </sect2>

      <sect2>
        <title>Instructing the Server to Use the Key</title>
        <para>
          Since keys are shared between two hosts only, the server must
          be told when keys are to be used. The following is added to the <filename>named.conf</filename> file
          for <emphasis>host1</emphasis>, if the IP address of <emphasis>host2</emphasis> is
          10.1.2.3:
        </para>

2135
2136
2137
2138
2139
<programlisting>
server 10.1.2.3 {
  keys { host1-host2. ;};
};
</programlisting>
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173

        <para>
          Multiple keys may be present, but only the first is used.
          This directive does not contain any secrets, so it may be in a
          world-readable
          file.
        </para>
        <para>
          If <emphasis>host1</emphasis> sends a message that is a request
          to that address, the message will be signed with the specified key. <emphasis>host1</emphasis> will
          expect any responses to signed messages to be signed with the same
          key.
        </para>
        <para>
          A similar statement must be present in <emphasis>host2</emphasis>'s
          configuration file (with <emphasis>host1</emphasis>'s address) for <emphasis>host2</emphasis> to
          sign request messages to <emphasis>host1</emphasis>.
        </para>
      </sect2>
      <sect2>
        <title>TSIG Key Based Access Control</title>
        <para>
          <acronym>BIND</acronym> allows IP addresses and ranges
          to be specified in ACL
          definitions and
          <command>allow-{ query | transfer | update }</command>
          directives.
          This has been extended to allow TSIG keys also. The above key would
          be denoted <command>key host1-host2.</command>
        </para>
        <para>
          An example of an allow-update directive would be:
        </para>

2174
2175
2176
2177
<programlisting>
allow-update { key host1-host2. ;};
</programlisting>

2178
	<para>
2179
2180
2181
2182
2183
2184
2185
2186
2187
	  This allows dynamic updates to succeed only if the request
	  was signed by a key named "<command>host1-host2.</command>".
	</para>

	<para>
	  You may want to read about the more powerful
	  <command>update-policy</command> statement in
	  <xref linkend="dynamic_update_policies"/>.
	</para>
2188
2189
2190
2191
2192
2193
2194
2195

      </sect2>
      <sect2>
        <title>Errors</title>

        <para>
          The processing of TSIG signed messages can result in
          several errors. If a signed message is sent to a non-TSIG aware
Mark Andrews's avatar
Mark Andrews committed
2196
          server, a FORMERR (format error) will be returned, since the server will not
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
          understand the record. This is a result of misconfiguration,
          since the server must be explicitly configured to send a TSIG
          signed message to a specific server.
        </para>

        <para>
          If a TSIG aware server receives a message signed by an
          unknown key, the response will be unsigned with the TSIG
          extended error code set to BADKEY. If a TSIG aware server
          receives a message with a signature that does not validate, the
          response will be unsigned with the TSIG extended error code set
          to BADSIG. If a TSIG aware server receives a message with a time
          outside of the allowed range, the response will be signed with
          the TSIG extended error code set to BADTIME, and the time values
          will be adjusted so that the response can be successfully
2212
          verified. In any of these cases, the message's rcode (response code) is set to
Mark Andrews's avatar
Mark Andrews committed
2213
          NOTAUTH (not authenticated).
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
        </para>

      </sect2>
    </sect1>
    <sect1>
      <title>TKEY</title>

      <para><command>TKEY</command>
        is a mechanism for automatically generating a shared secret
        between two hosts.  There are several "modes" of
        <command>TKEY</command> that specify how the key is generated
        or assigned.  <acronym>BIND</acronym> 9 implements only one of
        these modes, the Diffie-Hellman key exchange.  Both hosts are
        required to have a Diffie-Hellman KEY record (although this
        record is not required to be present in a zone).  The
        <command>TKEY</command> process must use signed messages,
        signed either by TSIG or SIG(0).  The result of
        <command>TKEY</command> is a shared secret that can be used to
        sign messages with TSIG.  <command>TKEY</command> can also be
        used to delete shared secrets that it had previously
        generated.
      </para>

      <para>
        The <command>TKEY</command> process is initiated by a
        client
        or server by sending a signed <command>TKEY</command>
        query
        (including any appropriate KEYs) to a TKEY-aware server.  The
        server response, if it indicates success, will contain a
        <command>TKEY</command> record and any appropriate keys.
        After
        this exchange, both participants have enough information to
        determine the shared secret; the exact process depends on the
        <command>TKEY</command> mode.  When using the
        Diffie-Hellman
        <command>TKEY</command> mode, Diffie-Hellman keys are
        exchanged,
        and the shared secret is derived by both participants.
      </para>

    </sect1>
    <sect1>
      <title>SIG(0)</title>

      <para>
        <acronym>BIND</acronym> 9 partially supports DNSSEC SIG(0)
            transaction signatures as specified in RFC 2535 and RFC2931.
        SIG(0)
        uses public/private keys to authenticate messages.  Access control
        is performed in the same manner as TSIG keys; privileges can be
        granted or denied based on the key name.
      </para>

      <para>
        When a SIG(0) signed message is received, it will only be
        verified if the key is known and trusted by the server; the server
        will not attempt to locate and/or validate the key.
      </para>

      <para>
        SIG(0) signing of multiple-message TCP streams is not
        supported.
      </para>

      <para>
        The only tool shipped with <acronym>BIND</acronym> 9 that
        generates SIG(0) signed messages is <command>nsupdate</command>.
      </para>

    </sect1>
    <sect1 id="DNSSEC">
      <title>DNSSEC</title>

      <para>
        Cryptographic authentication of DNS information is possible
        through the DNS Security (<emphasis>DNSSEC-bis</emphasis>) extensions,