Commit 3c1472d7 authored by Andreas Gustafsson's avatar Andreas Gustafsson
Browse files

added draft-ietf-dnsext-dnssec-okbit-00.txt

parent 3bd723c5
INTERNET-DRAFT David Conrad
draft-ietf-dnsext-dnssec-okbit-00.txt Nominum Inc.
August, 2000
Indicating Resolver Support of DNSSEC
Status of this Memo
This document is an Internet-Draft and is in full conformance with
all provisions of Section 10 of RFC2026.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt
The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.
Abstract
In order to deploy DNSSEC operationally, DNSSEC aware servers should
only respond with DNSSEC RRs when there is an explicit indication
that the resolver can understand those RRs. This document proposes
the use of a bit in the EDNS0 header to provide that explicit
indication and the necessary protocol changes to implement that
notification.
1. Introduction
DNSSEC [RFC2535] has been specified to provide data integrity and
authentication to security aware resolvers and applications through
the use of cryptographic digital signatures. However, as DNSSEC is
deployed, non-DNSSEC-aware clients will likely query DNSSEC-aware
servers. In such situations, the DNSSEC-aware server (responding to
a request for data in a signed zone) will respond with SIG, KEY,
and/or NXT records. For reasons described in the subsequent section,
such responses can have significant negative operational impacts for
the DNS infrastructure.
Expires February, 2001 [Page 1]
draft-ietf-dnsext-dnssec-okbit-00.txt August, 2000
This document discusses a method to avoid these negative impacts,
namely DNSSEC-aware servers should only respond with SIG, KEY, and/or
NXT RRs when there is an explicit indication from the resolver that
it can understand those RRs.
For the purposes of this document, "DNSSEC security RRs" are
considered RRs of type SIG, KEY, or NXT.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
2. Rationale
As DNSSEC is deployed, the vast majority of queries will be from
resolvers that are not DNSSEC aware and thus do not understand or
support the DNSSEC security RRs. When a query from such a resolver
is received for a DNSSEC signed zone, the DNSSEC specification
indicates the nameserver must respond with the appropriate DNSSEC
security RRs. As DNS UDP datagrams are limited to 512 bytes
[RFC1035], responses including DNSSEC security RRs have a high
probability of resulting in a truncated response being returned and
the resolver retrying the query using TCP.
TCP DNS queries result in significant overhead due to connection
setup and teardown. Operationally, the impact of these TCP queries
will likely be quite detrimental in terms of increased network
traffic (typically five packets for a single query/response instead
of two), increased latency resulting from the additional round trip
times, increased incidences of queries failing due to timeouts, and
significantly increased load on nameservers.
In addition, in preliminary and experimental deployment of DNSSEC,
there have been reports of non-DNSSEC aware resolvers being unable to
handle responses which contain DNSSEC security RRs, resulting in the
resolver failing (in the worst case) or entire responses being
ignored (in the better case).
Given these operational implications, explicitly notifying the
nameserver that the client is prepared to receive (if not understand)
DNSSEC security RRs would be prudent.
Client-side support of DNSSEC is assumed to be binary -- either the
client is willing to receive all DNSSEC security RRs or it is not
willing to accept any. As such, a single bit is sufficient to
indicate client-side DNSSEC support. As effective use of DNSSEC
implies the need of EDNS0 [RFC2671], bits in the "classic" (non-EDNS
enhanced DNS header) are scarce, and there may be situations in which
Expires February, 2001 [Page 2]
draft-ietf-dnsext-dnssec-okbit-00.txt August, 2000
non-compliant caching or forwarding servers inappropriately copy data
from classic headers as queries are passed on to authoritative
servers, the use of a bit from the EDNS0 header is proposed.
An alternative approach would be to use the existance of an EDNS0
header as an implicit indication of client-side support of DNSSEC.
This approach was not chosen as there may be applications in which
EDNS0 is supported but in which the use of DNSSEC is inappropriate.
3. Protocol Changes
The mechanism chosen for the explicit notification of the ability of
the client to accept (if not understand) DNSSEC security RRs is using
the most significant bit of the Z field on the EDNS0 OPT header in
the query. This bit is referred to as the "DNSSEC OK" (DO) bit. In
the context of the EDNS0 OPT meta-RR, the DO bit is the first bit of
the the third and fourth bytes of the "extended RCODE and flags"
portion of the EDNS0 OPT meta-RR, structured as follows:
+0 (MSB) +1 (LSB)
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
0: | EXTENDED-RCODE | VERSION |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
2: |DO| Z |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
Setting the DO bit to one in a query indicates to the server that the
resolver is able to accept DNSSEC security RRs. The DO bit cleared
(set to zero) indicates the resolver is unprepared to handle DNSSEC
security RRs and those RRs MUST NOT be returned in the response
(unless DNSSEC security RRs are explicitly queried for).
More explicitly, in order to explicitly indicate DNSSEC security RRs
are acceptible to the resolver, DNSSEC-aware nameservers (both BASIC
and FULL according to [RFC2535] definitions) MUST NOT add DNSSEC
security RRs to any section of a response unless at least one of the
following is true:
1) The DO bit of the query EDNS0 header was set on the request,
indicating that the client would like DNSSEC security RRs.
2) The query type is SIG, KEY, or NXT and the RRs added match the
query name and query type.
In case 1), response generation is as indicated in [RFC2535].
In case 2), only those RRs which match the query name and query type
are added.
Expires February, 2001 [Page 3]
draft-ietf-dnsext-dnssec-okbit-00.txt August, 2000
Recursive DNSSEC-aware server MUST set the DO bit on recursive
requests, regardless of the status of the DO bit on the initiating
resolver request. If the initiating resolver request does not have
the DO bit set, the recursive DNSSEC-aware server MUST remove DNSSEC
security RRs before returning the data to the client, however cached
data MUST NOT be modified.
In the event a server returns a NOTIMPL, FORMERR or SERVFAIL response
to a query that has the DO bit set, the resolver SHOULD NOT expect
DNSSEC security RRs and SHOULD retry the query without the EDNS0 in
accordance with section 5.3 of [RFC2671].
Security Considerations
The absence of DNSSEC data in response to a query with the DO bit set
MUST NOT be taken to mean no security information is available for
that zone as the response may be forged or a non-forged response of
an altered (DO bit cleared) query.
IANA Considerations
Allocation of the most significant bit of the Z field in the EDNS0
OPT meta-RR is required.
Acknowledgements
This document is based on a rough draft by Bob Halley with input from
Olafur Gudmundsson, Andreas Gustafsson, Brian Wellington, Randy Bush,
Rob Austein, and Steve Bellovin.
References
[RFC1034] Mockapetris, P., "Domain Names - Concepts and Facilities",
RFC 1034, November 1987.
[RFC1035] Mockapetris, P., "Domain Names - Implementation and
Specifications", RFC 1035, November 1987.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2535] Eastlake, D., "Domain Name System Security Extensions", RFC
2535, March 1999.
[RFC2671] Vixie, P., Extension Mechanisms for DNS (EDNS0)", RFC 2671,
August 1999
Author's Address
Expires February, 2001 [Page 4]
draft-ietf-dnsext-dnssec-okbit-00.txt August, 2000
David Conrad
Nominum Inc.
950 Charter Street
Redwood City, CA 94063
USA
Phone: +1 650 779 6003
Email: david.conrad@nominum.com
Full Copyright Statement
Copyright (C) The Internet Society (2000). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implmentation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind,
provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."
Expires February, 2001 [Page 5]
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment