Commit de276765 authored by Andreas Gustafsson's avatar Andreas Gustafsson
Browse files

added yet another draft

parent d8eee1b9
INTERNET-DRAFT ECC in the DNS
Expires April 2000 October 1999
draft-schroeppel-dnsind-ecc-00.txt
Elliptic Curve KEYs and SIGs in the DNS
-------- ----- ---- --- ---- -- --- ---
Richard C. Schroeppel
Donald Eastlake 3rd
Status of This Document
This draft, file name draft-schroeppel-dnsind-ecc-00.txt, is intended
to be become a Proposed Standard RFC. Distribution of this document
is unlimited. Comments should be sent to the DNS mailing list
<namedroppers@internic.com> or to the authors.
This document is an Internet-Draft and is in full conformance with
all provisions of Section 10 of RFC2026. Internet-Drafts are working
documents of the Internet Engineering Task Force (IETF), its areas,
and its working groups. Note that other groups may also distribute
working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six
months. Internet-Drafts may be updated, replaced, or obsoleted by
other documents at any time. It is not appropriate to use Internet-
Drafts as reference material or to cite them other than as a
``working draft'' or ``work in progress.''
The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt
The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.
Abstract
A standard method for storing elliptic curve cryptographic keys and
signatures in the Domain Name System is described which utilizes DNS
KEY and SIG resource records.
R. Schroeppel, et al [Page 1]
INTERNET-DRAFT ECC in the DNS
Acknowledgement
The assistance of Hilarie K. Orman in the production of this document
is greatfully acknowledged.
Table of Contents
Status of This Document....................................1
Abstract...................................................1
Acknowledgement............................................2
Table of Contents..........................................2
1. Introduction............................................3
2. Elliptic Curve KEY Resource Records.....................3
3. The Elliptic Curve Equation.............................9
4. How do I Compute Q, G, and Y?..........................10
5. Elliptic Curve SIG Resource Records....................11
6. Performance Considerations.............................13
7. Security Considerations................................13
8. IANA Considerations....................................13
References................................................14
Authors' Addresses........................................15
Expiration and File Name..................................15
R. Schroeppel, et al [Page 2]
INTERNET-DRAFT ECC in the DNS
1. Introduction
The Domain Name System (DNS) is the global hierarchical replicated
distributed database system for Internet addressing, mail proxy, and
other information. The DNS has been extended to include digital
signatures and cryptographic keys as described in [RFC 2535]. Thus
the DNS can now be secured and used for secure key distribution.
Elliptic curve keys can be used for signatures, as shown herein, and
also for key agreement and encryption. This document describes how to
store elliptic curve cryptographic (ECC) keys and signatures in the
DNS. Familiarity with ECC cryptography is assumed [Menezes].
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC 2119].
2. Elliptic Curve KEY Resource Records
Elliptic curve public keys are stored in the DNS as KEY RRs using
algorithm number 4 (see [RFC 2535]). The structure of the RDATA
portion of this RR is as shown below. The first 4 octets, including
the flags, protocol, and algorithm fields are common to all KEY RRs.
The remainder is the "public key" part of the KEY RR.
The period of key validity is not in the KEY RR but is indicated by
the SIG RR(s) which signs and authenticates the KEY RR(s) at that
domain name and class.
The research world continues to churn on the issue of which is the
best elliptic curve system, which finite field to use, and how to
best represent elements in the field.
We have defined representations for every type of finite field, and
every type of elliptic curve. The reader should be aware that there
is a unique finite field with a particular number of elements, but
many possible representations of that field and its elements. If two
different representations of a field are given, they are
interconvertible with a tedious but practical precomputation,
followed by a fast computation for each field element to be
converted. It is perfectly reasonable for an algorithm to work
internally with one field representation, and convert to and from a
different external representation.
R. Schroeppel, et al [Page 3]
INTERNET-DRAFT ECC in the DNS
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| KEY flags | protocol | algorithm=4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S M -FMT- A B Z|
+-+-+-+-+-+-+-+-+
| LP |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| P (length determined from LP) .../
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LF |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| F (length determined from LF) .../
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| DEG |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| DEGH |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| DEGI |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| DEGJ |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TRDV |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S| LH |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| H (length determined from LH) .../
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S| LK |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| K (length determined from LK) .../
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LQ |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Q (length determined from LQ) .../
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LA |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| A (length determined from LA) .../
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ALTA |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LB |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| B (length determined from LB) .../
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LC |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| C (length determined from LC) .../
R. Schroeppel, et al [Page 4]
INTERNET-DRAFT ECC in the DNS
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LG |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| G (length determined from LG) .../
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LY |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Y (length determined from LY) .../
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
SMFMTABZ is a flags octet as follows:
S = 1 indicates that the remaining 7 bits of the octet selects
one of 128 predefined choices of finite field, element
representation, elliptic curve, and signature parameters.
MFMTABZ are omitted, as are all parameters from LP through G.
LY and Y are retained.
If S = 0, the remaining parameters are as in the picture and
described below.
M determines the type of field underlying the elliptic curve.
M = 0 if the field is a GF[2^N] field;
M = 1 if the field is a (mod P) or GF[P^D] field with P>2.
FMT is a three bit field describing the format of the field
representation.
FMT = 0 for a (mod P) field.
> 0 for an extension field, either GF[2^D] or GF[P^D].
The degree D of the extension, and the field polynomial
must be specified. The field polynomial is always monic
(leading coefficient 1.)
FMT = 1 The field polynomial is given explicitly; D is implied.
If FMT >=2, the degree D is given explicitly.
= 2 The field polynomial is implicit.
= 3 The field polynomial is a binomial. P>2.
= 4 The field polynomial is a trinomial.
= 5 The field polynomial is the quotient of a trinomial by a
short polynomial. P=2.
= 6 The field polynomial is a pentanomial. P=2.
Flags A and B apply to the elliptic curve parameters.
R. Schroeppel, et al [Page 5]
INTERNET-DRAFT ECC in the DNS
A = 1 When P>=5, the curve parameter A is negated. If P=2, then
A=1 indicates that the A parameter is special. See the
ALTA parameter below, following A. The combination A=1,
P=3 is forbidden.
B = 1 When P>=5, the curve parameter B is negated. If P=2 or 3,
then B=1 indicates an alternate elliptic curve equation is
used. When P=2 and B=1, an additional curve parameter C
is present.
The Z bit SHOULD be set to zero on creation of KEY RR and MUST
be ignored when processing a KEY RR (when S=0).
Most of the remaining parameters are present in some formats and
absent in others. The presence or absence of a parameter is
determined entirely by the flags. When a parameter occurs, it is in
the order defined by the picture.
Of the remaining parameters, PFHKQABCGY are variable length. When
present, each is preceded by a one-octet length field as shown in the
diagram above. The length field does not include itself. The length
field may have values from 0 through 110. The parameter length in
octets is determined by a conditional formula: If LL<=64, the
parameter length is LL. If LL>64, the parameter length is 16 times
(LL-60). In some cases, a parameter value of 0 is sensible, and MAY
be represented by an LL value of 0, with the data field omitted. A
length value of 0 represents a parameter value of 0, not an absent
parameter. (The data portion occupies 0 space.) There is no
requirement that a parameter be represented in the minimum number of
octets; high-order 0 octets are allowed at the front end. Parameters
are always right adjusted, in a field of length defined by LL. The
octet-order is always most-significant first, least-significant last.
The parameters H and K may have an optional sign bit stored in the
unused high-order bit of their length fields.
LP defines the length of the prime P. P must be an odd prime. The
parameters LP,P are present if and only if the flag M=1. If M=0, the
prime is 2.
LF,F define an explicit field polynomial. This parameter pair is
present only when FMT = 1. The length of a polynomial coefficient is
ceiling(log2 P) bits. Coefficients are in the numerical range [0,P-
1]. The coefficients are packed into fixed-width fields, from higher
order to lower order. All coefficients must be present, including
any 0s and also the leading coefficient (which is required to be 1).
The coefficients are right justified into the octet string of length
specified by LF, with the low-order "constant" coefficient at the
right end. As a concession to storage efficiency, the higher order
bits of the leading coefficient may be elided, discarding high-order
0 octets and reducing LF. The degree is calculated by determining
R. Schroeppel, et al [Page 6]
INTERNET-DRAFT ECC in the DNS
the bit position of the left most 1-bit in the F data (counting the
right most bit as position 0), and dividing by ceiling(log2 P). The
division must be exact, with no remainder. In this format, all of
the other degree and field parameters are omitted. The next
parameters will be LQ,Q.
If FMT>=2, the degree of the field extension is specified explicitly,
usually along with other parameters to define the field polynomial.
DEG is a two octet field that defines the degree of the field
extension. The finite field will have P^DEG elements. DEG is
present when FMT>=2.
When FMT=2, the field polynomial is specified implicitly. No other
parameters are required to define the field; the next parameters
present will be the LQ,Q pair. The implicit field poynomial is the
lexicographically smallest irreducible (mod P) polynomial of the
correct degree. The ordering of polynomials is by highest-degree
coefficients first -- the leading coefficient 1 is most important,
and the constant term is least important. Coefficients are ordered
by sign-magnitude: 0 < 1 < -1 < 2 < -2 < ... The first polynomial
of degree D is X^D (which is not irreducible). The next is X^D+1,
which is sometimes irreducible, followed by X^D-1, which isn't.
Assuming odd P, this series continues to X^D - (P-1)/2, and then goes
to X^D + X, X^D + X + 1, X^D + X - 1, etc.
When FMT=3, the field polynomial is a binomial, X^DEG + K. P must be
odd. The polynomial is determined by the degree and the low order
term K. Of all the field parameters, only the LK,K parameters are
present. The high-order bit of the LK octet stores on optional sign
for K; if the sign bit is present, the field polynomial is X^DEG - K.
When FMT=4, the field polynomial is a trinomial, X^DEG + H*X^DEGH +
K. When P=2, the H and K parameters are implicitly 1, and are
omitted from the representation. Only DEG and DEGH are present; the
next parameters are LQ,Q. When P>2, then LH,H and LK,K are
specified. Either or both of LH, LK may contain a sign bit for its
parameter.
When FMT=5, then P=2 (only). The field polynomial is the exact
quotient of a trinomial divided by a small polynomial, the trinomial
divisor. The small polynomial is right-adjusted in the two octet
field TRDV. DEG specifies the degree of the field. The degree of
TRDV is calculated from the position of the high-order 1 bit. The
trinomial to be divided is X^(DEG+degree(TRDV)) + X^DEGH + 1. If
DEGH is 0, the middle term is omitted from the trinomial. The
quotient must be exact, with no remainder.
When FMT=6, then P=2 (only). The field polynomial is a pentanomial,
with the degrees of the middle terms given by the three 2-octet
R. Schroeppel, et al [Page 7]
INTERNET-DRAFT ECC in the DNS
values DEGH, DEGI, DEGJ. The polynomial is X^DEG + X^DEGH + X^DEGI +
X^DEGJ + 1. The values must satisfy the inequality DEG > DEGH > DEGI
> DEGJ > 0.
DEGH, DEGI, DEGJ are two-octet fields that define the degree of
a term in a field polynomial. DEGH is present when FMT = 4,
5, or 6. DEGI and DEGJ are present only when FMT = 6.
TRDV is a two-octet right-adjusted binary polynomial of degree <
16. It is present only for FMT=5.
LH and H define the H parameter, present only when FMT=4 and P
is odd. The high bit of LH is an optional sign bit for H.
LK and K define the K parameter, present when FMT = 3 or 4, and
P is odd. The high bit of LK is an optional sign bit for K.
The remaining parameters are concerned with the elliptic curve and
the signature algorithm.
LQ defines the length of the prime Q. Q is a prime > 2^159.
In all 5 of the parameter pairs LA+A,LB+B,LC+C,LG+G,LY+Y, the data
member of the pair is an element from the finite field defined
earlier. The length field defines a long octet string. Field
elements are represented as (mod P) polynomials of degree < DEG, with
DEG or fewer coefficients. The coefficients are stored from left to
right, higher degree to lower, with the constant term last. The
coefficients are represented as integers in the range [0,P-1]. Each
coefficient is allocated an area of ceiling(log2 P) bits. The field
representation is right-justified; the "constant term" of the field
element ends at the right most bit. The coefficients are fitted
adjacently without regard for octet boundaries. (Example: if P=5,
three bits are used for each coefficient. If the field is GF[5^75],
then 225 bits are required for the coefficients, and as many as 29
octets may be needed in the data area. Fewer octets may be used if
some high-order coefficients are 0.) If a flag requires a field
element to be negated, each non-zero coefficient K is replaced with
P-K. To save space, 0 bits may be removed from the left end of the
element representation, and the length field reduced appropriately.
This would normally only happen with A,B,C, because the designer
chose curve parameters with some high-order 0 coefficients or bits.
If the finite field is simply (mod P), then the field elements are
simply numbers (mod P), in the usual right-justified notation. If
the finite field is GF[2^D], the field elements are the usual right-
justified polynomial basis representation.
R. Schroeppel, et al [Page 8]
INTERNET-DRAFT ECC in the DNS
LA,A is the first parameter of the elliptic curve equation.
When P>=5, the flag A = 1 indicates A should be negated (mod
P). When P=2 (indicated by the flag M=0), the flag A = 1
indicates that the parameter pair LA,A is replaced by the two
octet parameter ALTA. In this case, the parameter A in the
curve equation is x^ALTA, where x is the field generator.
Parameter A often has the value 0, which may be indicated by
LA=0 (with no A data field), and sometimes A is 1, which may
be represented with LA=1 and a data field of 1, or by setting
the A flag and using an ALTA value of 0.
LB,B is the second parameter of the elliptic curve equation.
When P>=5, the flag B = 1 indicates B should be negated (mod
P). When P=2 or 3, the flag B selects an alternate curve
equation.
LC,C is the third parameter of the elliptic curve equation,
present only when P=2 (indicated by flag M=0) and flag B=1.
LG,G defines a point on the curve, of order Q. The W-coordinate
of the curve point is given explicitly; the Z-coordinate is
implicit.
LY,Y is the user's public signing key, another curve point of
order Q. The W-coordinate is given explicitly; the Z-
coordinate is implicit. The LY,Y parameter pair is always
present.
3. The Elliptic Curve Equation
(The coordinates of an elliptic curve point are named W,Z instead of
the more usual X,Y to avoid confusion with the Y parameter of the
signing key.)
The elliptic curve equation is determined by the flag octet, together
with information about the prime P. The primes 2 and 3 are special;
all other primes are treated identically.
If M=1, the (mod P) or GF[P^D] case, the curve equation is Z^2 = W^3
+ A*W + B. Z,W,A,B are all numbers (mod P) or elements of GF[P^D].
If A and/or B is negative (i.e., in the range from P/2 to P), and
P>=5, space may be saved by putting the sign bit(s) in the A and B
bits of the flags octet, and the magnitude(s) in the parameter
fields.
If M=1 and P=3, the B flag has a different meaning: it specifies an
alternate curve equation, Z^2 = W^3 + A*W^2 + B. The middle term of
the right-hand-side is different. When P=3, this equation is more
R. Schroeppel, et al [Page 9]
INTERNET-DRAFT ECC in the DNS
commonly used.
If M=0, the GF[2^N] case, the curve equation is Z^2 + W*Z = W^3 +
A*W^2 + B. Z,W,A,B are all elements of the field GF[2^N]. The A
parameter can often be 0 or 1, or be chosen as a single-1-bit value.
The flag B is used to select an alternate curve equation, Z^2 + C*Z =
W^3 + A*W + B. This is the only time that the C parameter is used.
4. How do I Compute Q, G, and Y?
The number of points on the curve is the number of solutions to the
curve equation, + 1 (for the "point at infinity"). The prime Q must
divide the number of points. Usually the curve is chosen first, then
the number of points is determined with Schoof's algorithm. This
number is factored, and if it has a large prime divisor, that number
is taken as Q.
G must be a point of order Q on the curve, satisfying the equation
Q * G = the point at infinity (on the elliptic curve)
G may be chosen by selecting a random [RFC 1750] curve point, and
multiplying it by (number-of-points-on-curve/Q). G must not itself
be the "point at infinity"; in this astronomically unlikely event, a
new random curve point is recalculated.
G is specified by giving its W-coordinate. The Z-coordinate is
calculated from the curve equation. In general, there will be two
possible Z values. The rule is to choose the "positive" value.
In the (mod P) case, the two possible Z values sum to P. The smaller
value is less than P/2; it is used in subsequent calculations. In
GF[P^D] fields, the highest-degree non-zero coefficient of the field
element Z is used; it is chosen to be less than P/2.
In the GF[2^N] case, the two possible Z values xor to W (or to the
parameter C with the alternate curve equation). The numerically
smaller Z value (the one which does not contain the highest-order 1
bit of W (or C)) is used in subsequent calculations.
Y is specified by giving the W-coordinate of the user's public
signature key. The Z-coordinate value is determined from the curve
equation. As with G, there are two possible Z values; the same rule
is followed for choosing which Z to use.
R. Schroeppel, et al [Page 10]
INTERNET-DRAFT ECC in the DNS
During the key generation process, a random [RFC 1750] number X must
be generated such that 1 <= X <= Q-1. X is the private key and is
used in the final step of public key generation where Y is computed
as
Y = X * G (as points on the elliptic curve)
If the Z-coordinate of the computed point Y is wrong (i.e., Z > P/2
in the (mod P) case, or the high-order non-zero coefficient of Z >
P/2 in the GF[P^D] case, or Z sharing a high bit with W(C) in the
GF[2^N] case), then X must be replaced with Q-X. This will
correspond to the correct Z-coordinate.
5. Elliptic Curve SIG Resource Records
The signature portion of the SIG RR RDATA area, when using the EC
algorithm, is shown below. See [RFC 2535] for fields in the SIG RR
RDATA which precede the signature itself.
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| R, (length determined from LQ) .../
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| S, (length determined from LQ) .../
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
R and S are integers (mod Q). Their length is specified by the LQ
field of the corresponding KEY RR and can also be calculated from the
SIG RR's RDLENGTH. They are right justified, high-order-octet first.
The same conditional formula for calculating the length from LQ is
used as for all the other length fields above.
The data signed is determined as specified in [RFC 2535]. Then the
following steps are taken where Q, P, G, and Y are as specified in
the public key [Schneier]:
hash = SHA-1 ( data )
Generate random [RFC 1750] K such that 0 < K < Q. (Never sign
two different messages with the same K. K should be chosen
from a very large space: If an opponent learns a K value for
a single signature, the user's signing key is compromised,
and a forger can sign arbitrary messages. There is no harm
in signing the same message multiple times with the same key
or different keys.)