Commit edf25ca2 authored by Tomek Mrugalski's avatar Tomek Mrugalski 🛰
Browse files

[master] Merge branch 'trac3434' (lib/util/hash cleanup)

parents abf89881 1f426705
......@@ -21,12 +21,15 @@
#include <vector>
#include <boost/noncopyable.hpp>
#include <boost/scoped_ptr.hpp>
#include <exceptions/exceptions.h>
#include <util/buffer.h>
#include <util/encode/base32hex.h>
#include <util/hash/sha1.h>
#include <cryptolink/cryptolink.h>
#include <cryptolink/crypto_hash.h>
#include <dns/name.h>
#include <dns/labelsequence.h>
......@@ -37,7 +40,7 @@
using namespace std;
using namespace isc::util;
using namespace isc::util::encode;
using namespace isc::util::hash;
using namespace isc::cryptolink;
using namespace isc::dns;
using namespace isc::dns::rdata;
......@@ -57,13 +60,15 @@ class NSEC3HashRFC5155 : boost::noncopyable, public NSEC3Hash {
private:
// This is the algorithm number for SHA1/NSEC3 as defined in RFC5155.
static const uint8_t NSEC3_HASH_SHA1 = 1;
// For digest_ allocation
static const size_t DEFAULT_DIGEST_LENGTH = 32;
public:
NSEC3HashRFC5155(uint8_t algorithm, uint16_t iterations,
const uint8_t* salt_data, size_t salt_length) :
algorithm_(algorithm), iterations_(iterations),
salt_data_(NULL), salt_length_(salt_length),
digest_(SHA1_HASHSIZE), obuf_(Name::MAX_WIRE)
digest_(DEFAULT_DIGEST_LENGTH), obuf_(Name::MAX_WIRE)
{
if (algorithm_ != NSEC3_HASH_SHA1) {
isc_throw(UnknownNSEC3HashAlgorithm, "Unknown NSEC3 algorithm: " <<
......@@ -77,8 +82,6 @@ public:
}
std::memcpy(salt_data_, salt_data, salt_length);
}
SHA1Reset(&sha1_ctx_);
}
virtual ~NSEC3HashRFC5155() {
......@@ -104,20 +107,20 @@ private:
// The following members are placeholder of work place and don't hold
// any state over multiple calls so can be mutable without breaking
// constness.
mutable SHA1Context sha1_ctx_;
mutable vector<uint8_t> digest_;
mutable OutputBuffer digest_;
mutable vector<uint8_t> vdigest_;
mutable OutputBuffer obuf_;
};
inline void
iterateSHA1(SHA1Context* ctx, const uint8_t* input, size_t inlength,
iterateSHA1(const uint8_t* input, size_t inlength,
const uint8_t* salt, size_t saltlen,
uint8_t output[SHA1_HASHSIZE])
OutputBuffer& output)
{
SHA1Reset(ctx);
SHA1Input(ctx, input, inlength);
SHA1Input(ctx, salt, saltlen); // this works whether saltlen == or > 0
SHA1Result(ctx, output);
boost::scoped_ptr<Hash> hash(CryptoLink::getCryptoLink().createHash(SHA1));
hash->update(input, inlength);
hash->update(salt, saltlen); // this works whether saltlen == or > 0
hash->final(output);
}
string
......@@ -143,17 +146,19 @@ NSEC3HashRFC5155::calculateForWiredata(const uint8_t* data,
*p2 = *p1;
uint8_t* const digest = &digest_[0];
assert(digest_.size() == SHA1_HASHSIZE);
iterateSHA1(&sha1_ctx_, name_buf, length,
salt_data_, salt_length_, digest);
digest_.clear();
iterateSHA1(name_buf, length,
salt_data_, salt_length_, digest_);
const uint8_t* dgst_data = static_cast<const uint8_t*>(digest_.getData());
size_t dgst_len = digest_.getLength();
for (unsigned int n = 0; n < iterations_; ++n) {
iterateSHA1(&sha1_ctx_, digest, SHA1_HASHSIZE,
salt_data_, salt_length_, digest);
digest_.clear();
iterateSHA1(dgst_data, dgst_len, salt_data_, salt_length_, digest_);
}
return (encodeBase32Hex(digest_));
vdigest_.resize(dgst_len);
std::memcpy(&vdigest_[0], dgst_data, dgst_len);
return (encodeBase32Hex(vdigest_));
}
string
......
......@@ -32,7 +32,6 @@ libkea_util_la_SOURCES += memory_segment_mapped.h memory_segment_mapped.cc
endif
libkea_util_la_SOURCES += range_utilities.h
libkea_util_la_SOURCES += signal_set.cc signal_set.h
libkea_util_la_SOURCES += hash/sha1.h hash/sha1.cc
libkea_util_la_SOURCES += encode/base16_from_binary.h
libkea_util_la_SOURCES += encode/base32hex.h encode/base64.h
libkea_util_la_SOURCES += encode/base32hex_from_binary.h
......
......@@ -417,8 +417,15 @@ public:
/// \brief Clear buffer content.
///
/// This method can be used to re-initialize and reuse the buffer without
/// constructing a new one.
/// constructing a new one. Note it must keep current content.
void clear() { size_ = 0; }
/// \brief Wipe buffer content.
///
/// This method is the destructive alternative to clear().
void wipe() {
memset(buffer_, 0, allocated_);
size_ = 0;
}
/// \brief Write an unsigned 8-bit integer into the buffer.
///
/// \param data The 8-bit integer to be written into the buffer.
......
/*
* Description:
* This file implements the Secure Hash Signature Standard
* algorithms as defined in the National Institute of Standards
* and Technology Federal Information Processing Standards
* Publication (FIPS PUB) 180-1 published on April 17, 1995, 180-2
* published on August 1, 2002, and the FIPS PUB 180-2 Change
* Notice published on February 28, 2004.
*
* A combined document showing all algorithms is available at
* http://csrc.nist.gov/publications/fips/
* fips180-2/fips180-2withchangenotice.pdf
*
* The SHA-1 algorithm produces a 160-bit message digest for a
* given data stream. It should take about 2**n steps to find a
* message with the same digest as a given message and
* 2**(n/2) to find any two messages with the same digest,
* when n is the digest size in bits. Therefore, this
* algorithm can serve as a means of providing a
* "fingerprint" for a message.
*
* Portability Issues:
* SHA-1 is defined in terms of 32-bit "words". This code
* uses <stdint.h> (included via "sha.h") to define 32 and 8
* bit unsigned integer types. If your C compiler does not
* support 32 bit unsigned integers, this code is not
* appropriate.
*
* Caveats:
* SHA-1 is designed to work with messages less than 2^64 bits
* long. This implementation uses SHA1Input() to hash the bits
* that are a multiple of the size of an 8-bit character, and then
* uses SHA1FinalBits() to hash the final few bits of the input.
*
* Authorship:
* This file is adapted from RFC 4634, by D. Eastlake et al.
* Copyright (C) The Internet Society (2006).
*
* Permission is granted for all uses, commercial and non-commercial,
* of the sample code found in Section 8. Royalty free license to
* use, copy, modify and distribute the software found in Section 8 is
* granted, provided that this document is identified in all material
* mentioning or referencing this software, and provided that
* redistributed derivative works do not contain misleading author or
* version information.
*
* The authors make no representations concerning either the
* merchantability of this software or the suitability of this
* software for any particular purpose. It is provided "as is"
* without express or implied warranty of any kind.
*
*/
#include <util/hash/sha1.h>
namespace isc {
namespace util {
namespace hash {
/* Local Function Prototyptes */
static void SHA1Finalize(SHA1Context *, uint8_t Pad_Byte);
static void SHA1PadMessage(SHA1Context *, uint8_t Pad_Byte);
static void SHA1ProcessMessageBlock(SHA1Context *);
/*
* Define functions used by SHA1 hash
*/
static inline uint32_t
SHA_Ch(const uint32_t x, const uint32_t y, const uint32_t z) {
return (((x) & ((y) ^ (z))) ^ (z));
}
static inline uint32_t
SHA_Maj(const uint32_t x, const uint32_t y, const uint32_t z) {
return (((x) & ((y) | (z))) | ((y) & (z)));
}
static inline uint32_t
SHA_Parity(const uint32_t x, const uint32_t y, const uint32_t z) {
return ((x) ^ (y) ^ (z));
}
static inline int
SHA1CircularShift(uint8_t bits, uint32_t word) {
return ((word << bits) | (word >> (32 - bits)));
}
static inline bool
SHA1AddLength(SHA1Context *context, uint32_t length) {
uint32_t addTemp = context->Length_Low;
context->Length_Low += length;
if (context->Length_Low < addTemp && ++context->Length_High == 0) {
return (true);
} else {
return (false);
}
}
/*
* SHA1Reset
*
* Description:
* This function will initialize the SHA1Context in preparation
* for computing a new SHA1 message digest.
*
* Parameters:
* context: [in/out]
* The context to reset.
*
* Returns:
* sha Error Code.
*
*/
int
SHA1Reset(SHA1Context *context) {
if (!context) {
return (SHA_NULL);
}
context->Length_Low = 0;
context->Length_High = 0;
context->Message_Block_Index = 0;
context->Intermediate_Hash[0] = 0x67452301;
context->Intermediate_Hash[1] = 0xEFCDAB89;
context->Intermediate_Hash[2] = 0x98BADCFE;
context->Intermediate_Hash[3] = 0x10325476;
context->Intermediate_Hash[4] = 0xC3D2E1F0;
context->Computed = 0;
context->Corrupted = 0;
return (SHA_SUCCESS);
}
/*
* SHA1Input
*
* Description:
* This function accepts an array of octets as the next portion
* of the message.
*
* Parameters:
* context: [in/out]
* The SHA context to update
* message_array: [in]
* An array of characters representing the next portion of
* the message.
* length: [in]
* The length of the message in message_array
*
* Returns:
* sha Error Code.
*
*/
int
SHA1Input(SHA1Context *context, const uint8_t *message_array, unsigned length) {
if (!length) {
return (SHA_SUCCESS);
}
if (!context || !message_array) {
return (SHA_NULL);
}
if (context->Computed) {
context->Corrupted = SHA_STATEERROR;
return (SHA_STATEERROR);
}
if (context->Corrupted) {
return (context->Corrupted);
}
while(length-- && !context->Corrupted) {
context->Message_Block[context->Message_Block_Index++] =
(*message_array & 0xFF);
if (!SHA1AddLength(context, 8) &&
(context->Message_Block_Index == SHA1_BLOCKSIZE))
{
SHA1ProcessMessageBlock(context);
}
message_array++;
}
return (SHA_SUCCESS);
}
/*
* SHA1FinalBits
*
* Description:
* This function will add in any final bits of the message.
*
* Parameters:
* context: [in/out]
* The SHA context to update
* message_bits: [in]
* The final bits of the message, in the upper portion of the
* byte. (Use 0b###00000 instead of 0b00000### to input the
* three bits ###.)
* length: [in]
* The number of bits in message_bits, between 1 and 7.
*
* Returns:
* sha Error Code.
*/
int SHA1FinalBits(SHA1Context *context, const uint8_t message_bits,
unsigned int length)
{
uint8_t masks[8] = {
/* 0 0b00000000 */ 0x00,
/* 1 0b10000000 */ 0x80,
/* 2 0b11000000 */ 0xC0,
/* 3 0b11100000 */ 0xE0,
/* 4 0b11110000 */ 0xF0,
/* 5 0b11111000 */ 0xF8,
/* 6 0b11111100 */ 0xFC,
/* 7 0b11111110 */ 0xFE
};
uint8_t markbit[8] = {
/* 0 0b10000000 */ 0x80,
/* 1 0b01000000 */ 0x40,
/* 2 0b00100000 */ 0x20,
/* 3 0b00010000 */ 0x10,
/* 4 0b00001000 */ 0x08,
/* 5 0b00000100 */ 0x04,
/* 6 0b00000010 */ 0x02,
/* 7 0b00000001 */ 0x01
};
if (!length) {
return (SHA_SUCCESS);
}
if (!context) {
return (SHA_NULL);
}
if (context->Computed || (length >= 8) || (length == 0)) {
context->Corrupted = SHA_STATEERROR;
return (SHA_STATEERROR);
}
if (context->Corrupted) {
return (context->Corrupted);
}
SHA1AddLength(context, length);
SHA1Finalize(context,
(uint8_t) ((message_bits & masks[length]) | markbit[length]));
return (SHA_SUCCESS);
}
/*
* SHA1Result
*
* Description:
* This function will return the 160-bit message digest into the
* Message_Digest array provided by the caller.
* NOTE: The first octet of hash is stored in the 0th element,
* the last octet of hash in the 19th element.
*
* Parameters:
* context: [in/out]
* The context to use to calculate the SHA-1 hash.
* Message_Digest: [out]
* Where the digest is returned.
*
* Returns:
* sha Error Code.
*
*/
int
SHA1Result(SHA1Context *context, uint8_t Message_Digest[SHA1_HASHSIZE]) {
int i;
if (!context || !Message_Digest) {
return (SHA_NULL);
}
if (context->Corrupted) {
return (context->Corrupted);
}
if (!context->Computed) {
SHA1Finalize(context, 0x80);
}
for(i = 0; i < SHA1_HASHSIZE; ++i) {
Message_Digest[i] = context->Intermediate_Hash[i>>2]
>> 8 * (3 - (i & 0x03));
}
return (SHA_SUCCESS);
}
/*
* SHA1Finalize
*
* Description:
* This helper function finishes off the digest calculations.
*
* Parameters:
* context: [in/out]
* The SHA context to update
* Pad_Byte: [in]
* The last byte to add to the digest before the 0-padding
* and length. This will contain the last bits of the message
* followed by another single bit. If the message was an
* exact multiple of 8-bits long, Pad_Byte will be 0x80.
*
* Returns:
* sha Error Code.
*
*/
static void SHA1Finalize(SHA1Context *context, uint8_t Pad_Byte) {
int i;
SHA1PadMessage(context, Pad_Byte);
/* message may be sensitive, clear it out */
for (i = 0; i < SHA1_BLOCKSIZE; ++i)
context->Message_Block[i] = 0;
context->Length_Low = 0; /* and clear length */
context->Length_High = 0;
context->Computed = 1;
}
/*
* SHA1PadMessage
*
* Description:
* According to the standard, the message must be padded to an even
* 512 bits. The first padding bit must be a '1'. The last 64
* bits represent the length of the original message. All bits in
* between should be 0. This function will pad the message
* according to those rules by filling the Message_Block array
* accordingly. It will also call the ProcessMessageBlock function
* provided appropriately. When it returns, it can be assumed that
* the message digest has been computed.
*
* Parameters:
* context: [in/out]
* The context to pad
* Pad_Byte: [in]
* The last byte to add to the digest before the 0-padding
* and length. This will contain the last bits of the message
* followed by another single bit. If the message was an
* exact multiple of 8-bits long, Pad_Byte will be 0x80.
*
* Returns:
* Nothing.
*
*/
static void SHA1PadMessage(SHA1Context *context, uint8_t Pad_Byte) {
/*
* Check to see if the current message block is too small to hold
* the initial padding bits and length. If so, we will pad the
* block, process it, and then continue padding into a second
* block.
*/
if (context->Message_Block_Index >= (SHA1_BLOCKSIZE - 8)) {
context->Message_Block[context->Message_Block_Index++] = Pad_Byte;
while (context->Message_Block_Index < SHA1_BLOCKSIZE) {
context->Message_Block[context->Message_Block_Index++] = 0;
}
SHA1ProcessMessageBlock(context);
} else
context->Message_Block[context->Message_Block_Index++] = Pad_Byte;
while (context->Message_Block_Index < (SHA1_BLOCKSIZE - 8))
context->Message_Block[context->Message_Block_Index++] = 0;
/*
* Store the message length as the last 8 octets
*/
context->Message_Block[56] = (uint8_t) (context->Length_High >> 24);
context->Message_Block[57] = (uint8_t) (context->Length_High >> 16);
context->Message_Block[58] = (uint8_t) (context->Length_High >> 8);
context->Message_Block[59] = (uint8_t) (context->Length_High);
context->Message_Block[60] = (uint8_t) (context->Length_Low >> 24);
context->Message_Block[61] = (uint8_t) (context->Length_Low >> 16);
context->Message_Block[62] = (uint8_t) (context->Length_Low >> 8);
context->Message_Block[63] = (uint8_t) (context->Length_Low);
SHA1ProcessMessageBlock(context);
}
/*
* SHA1ProcessMessageBlock
*
* Description:
* This helper function will process the next 512 bits of the
* message stored in the Message_Block array.
*
* Parameters:
* None.
*
* Returns:
* Nothing.
*
* Comments:
* Many of the variable names in this code, especially the
* single character names, were used because those were the
* names used in the publication.
*
*
*/
static void
SHA1ProcessMessageBlock(SHA1Context *context) {
/* Constants defined in FIPS-180-2, section 4.2.1 */
const uint32_t K[] = {
0x5A827999,
0x6ED9EBA1,
0x8F1BBCDC,
0xCA62C1D6
};
int t; /* Loop counter */
uint32_t temp; /* Temporary word value */
uint32_t W[80]; /* Word sequence */
uint32_t A, B, C, D, E; /* Word buffers */
/*
* Initialize the first 16 words in the array W
*/
for (t = 0; t < 16; t++) {
W[t] = ((uint32_t)context->Message_Block[t * 4]) << 24;
W[t] |= ((uint32_t)context->Message_Block[t * 4 + 1]) << 16;
W[t] |= ((uint32_t)context->Message_Block[t * 4 + 2]) << 8;
W[t] |= ((uint32_t)context->Message_Block[t * 4 + 3]);
}
for (t = 16; t < 80; t++) {
W[t] = SHA1CircularShift(1, W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]);
}
A = context->Intermediate_Hash[0];
B = context->Intermediate_Hash[1];
C = context->Intermediate_Hash[2];
D = context->Intermediate_Hash[3];
E = context->Intermediate_Hash[4];
for (t = 0; t < 20; t++) {
temp = SHA1CircularShift(5,A) + SHA_Ch(B, C, D) + E + W[t] + K[0];
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
}
for (t = 20; t < 40; t++) {
temp = SHA1CircularShift(5,A) + SHA_Parity(B, C, D) + E + W[t] + K[1];
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
}
for (t = 40; t < 60; t++) {
temp = SHA1CircularShift(5,A) + SHA_Maj(B, C, D) + E + W[t] + K[2];
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
}
for (t = 60; t < 80; t++) {
temp = SHA1CircularShift(5,A) + SHA_Parity(B, C, D) + E + W[t] + K[3];
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
}
context->Intermediate_Hash[0] += A;
context->Intermediate_Hash[1] += B;
context->Intermediate_Hash[2] += C;
context->Intermediate_Hash[3] += D;
context->Intermediate_Hash[4] += E;