// Copyright (C) 2011-2012 Internet Systems Consortium, Inc. ("ISC") // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH // REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY // AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT, // INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM // LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE // OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR // PERFORMANCE OF THIS SOFTWARE. #include #include "../sockcreator.h" #include #include #include #include #include #include #include #include #include using namespace isc::socket_creator; using namespace isc::util::unittests; using namespace isc::util::io; // The tests check both TCP and UDP sockets on IPv4 and IPv6. // // Essentially we need to check all four combinations of TCP/UDP and IPv4/IPv6. // The different address families (IPv4/IPv6) require different structures to // hold the address information, and so some common code is in the form of // templates (or overloads), parameterised on the structure type. // // The protocol is determined by an integer (SOCK_STREAM or SOCK_DGRAM) so // cannot be templated in the same way. Relevant check functions are // selected manually. namespace { // Set IP-version-specific fields. void setAddressFamilyFields(sockaddr_in* address) { address->sin_family = AF_INET; address->sin_addr.s_addr = INADDR_ANY; } void setAddressFamilyFields(sockaddr_in6* address) { address->sin6_family = AF_INET6; address->sin6_addr = in6addr_loopback; } // Socket has been opened, peform a check on it. The sole argument is the // socket descriptor. The TCP check is the same regardless of the address // family. The UDP check requires that the socket address be obtained so // is parameterised on the type of structure required to hold the address. void tcpCheck(const int socknum) { // Sufficient to be able to listen on the socket. EXPECT_EQ(0, listen(socknum, 1)); } template void udpCheck(const int socknum) { // UDP testing is more complicated than TCP: send a packet to ourselves and // see if it arrives. // Get details of the socket so that we can use it as the target of the // sendto(). ADDRTYPE addr; memset(&addr, 0, sizeof(addr)); sockaddr* addr_ptr = reinterpret_cast(&addr); socklen_t len = sizeof(addr); ASSERT_EQ(0, getsockname(socknum, addr_ptr, &len)); // Send the packet to ourselves and check we receive it. ASSERT_EQ(5, sendto(socknum, "test", 5, 0, addr_ptr, sizeof(addr))) << "Send failed with error " << strerror(errno) << " on socket " << socknum; char buffer[5]; ASSERT_EQ(5, recv(socknum, buffer, 5, 0)) << "Recv failed with error " << strerror(errno) << " on socket " << socknum; EXPECT_STREQ("test", buffer); } // The check function (tcpCheck/udpCheck) is passed as a parameter to the test // code, so provide a conveniet typedef. typedef void (*socket_check_t)(const int); // Address-family-specific scoket checks. // // The first argument is used to select the overloaded check function. // The other argument is the socket descriptor number. // IPv4 check void addressFamilySpecificCheck(const sockaddr_in*, const int) { }; // IPv6 check void addressFamilySpecificCheck(const sockaddr_in6*, const int socknum) { int options; socklen_t len = sizeof(options); EXPECT_EQ(0, getsockopt(socknum, IPPROTO_IPV6, IPV6_V6ONLY, &options, &len)); EXPECT_NE(0, options); }; // Generic version of the socket test. It creates the socket and checks that // it is a valid descriptor. The family-specific check functions are called // to check that the socket is valid. The function is parameterised according // to the structure used to hold the address. // // Arguments: // socket_type Type of socket to create (SOCK_DGRAM or SOCK_STREAM) // socket_check Associated check function - udpCheck() or tcpCheck() template void testAnyCreate(int socket_type, socket_check_t socket_check) { // Create the socket. ADDRTYPE addr; memset(&addr, 0, sizeof(addr)); setAddressFamilyFields(&addr); sockaddr* addr_ptr = reinterpret_cast(&addr); int socket = get_sock(socket_type, addr_ptr, sizeof(addr)); ASSERT_GE(socket, 0) << "Couldn't create socket: failed with " << "return code " << socket << " and error " << strerror(errno); // Perform socket-type-specific testing. socket_check(socket); // Do address-family-independent int options; socklen_t len = sizeof(options); EXPECT_EQ(0, getsockopt(socket, SOL_SOCKET, SO_REUSEADDR, &options, &len)); EXPECT_NE(0, options); // ...and the address-family specific tests. addressFamilySpecificCheck(&addr, socket); // Tidy up and exit. EXPECT_EQ(0, close(socket)); } // Several tests to ensure we can create the sockets. TEST(get_sock, udp4_create) { testAnyCreate(SOCK_DGRAM, udpCheck); } TEST(get_sock, tcp4_create) { testAnyCreate(SOCK_STREAM, tcpCheck); } TEST(get_sock, udp6_create) { testAnyCreate(SOCK_DGRAM, udpCheck); } TEST(get_sock, tcp6_create) { testAnyCreate(SOCK_STREAM, tcpCheck); } /* * Try to ask the get_sock function some nonsense and test if it * is able to report error. */ TEST(get_sock, fail_with_nonsense) { struct sockaddr addr; memset(&addr, 0, sizeof addr); ASSERT_LT(get_sock(0, &addr, sizeof addr), 0); } /* * Helper functions to pass to run during testing. */ int get_sock_dummy(const int type, struct sockaddr *addr, const socklen_t) { int result(0); int port(0); /* * We encode the type and address family into the int and return it. * Lets ignore the port and address for now * First bit is 1 if it is known type. Second tells if TCP or UDP. * The familly is similar - third bit is known address family, * the fourth is the family. */ switch (type) { case SOCK_STREAM: result += 1; break; case SOCK_DGRAM: result += 3; break; } switch (addr->sa_family) { case AF_INET: result += 4; port = static_cast( static_cast(addr))->sin_port; break; case AF_INET6: result += 12; port = static_cast( static_cast(addr))->sin6_port; break; } /* * The port should be 0xffff. If it's not, we change the result. * The port of 0xbbbb means bind should fail and 0xcccc means * socket should fail. */ if (port != 0xffff) { errno = 0; if (port == 0xbbbb) { return -2; } else if (port == 0xcccc) { return -1; } else { result += 16; } } return result; } int send_fd_dummy(const int destination, const int what) { /* * Make sure it is 1 byte so we know the length. We do not use more during * the test anyway. */ char fd_data(what); if (!write_data(destination, &fd_data, 1)) { return -1; } else { return 0; } } // Just ignore the fd and pretend success. We close invalid fds in the tests. int closeIgnore(int) { return (0); } /* * Generic test that it works, with various inputs and outputs. * It uses different functions to create the socket and send it and pass * data to it and check it returns correct data back, to see if the run() * parses the commands correctly. */ void run_test(const char *input_data, const size_t input_size, const char *output_data, const size_t output_size, bool should_succeed = true, const close_t test_close = closeIgnore, const send_fd_t send_fd = send_fd_dummy) { // Prepare the input feeder and output checker processes int input_fd(0), output_fd(0); pid_t input(provide_input(&input_fd, input_data, input_size)), output(check_output(&output_fd, output_data, output_size)); ASSERT_NE(-1, input) << "Couldn't start input feeder"; ASSERT_NE(-1, output) << "Couldn't start output checker"; // Run the body if (should_succeed) { EXPECT_NO_THROW(run(input_fd, output_fd, get_sock_dummy, send_fd, test_close)); } else { EXPECT_THROW(run(input_fd, output_fd, get_sock_dummy, send_fd, test_close), isc::socket_creator::SocketCreatorError); } // Close the pipes close(input_fd); close(output_fd); // Did it run well? // Check the subprocesses say everything is OK too EXPECT_TRUE(process_ok(input)); EXPECT_TRUE(process_ok(output)); } /* * Check it terminates successfully when asked to. */ TEST(run, terminate) { run_test("T", 1, NULL, 0); } /* * Check it rejects incorrect input. */ TEST(run, bad_input) { run_test("XXX", 3, "FI", 2, false); } /* * Check it correctly parses queries to create sockets. */ TEST(run, sockets) { run_test( "SU4\xff\xff\0\0\0\0" // This has 9 bytes "ST4\xff\xff\0\0\0\0" // This has 9 bytes "ST6\xff\xff\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" // This has 21 bytes "SU6\xff\xff\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" // This has 21 bytes "T", 61, "S\x07S\x05S\x0dS\x0f", 8); } /* * Check if failures of get_socket are handled correctly. */ TEST(run, bad_sockets) { // We need to construct the answer, but it depends on int length. size_t int_len(sizeof(int)); size_t result_len(4 + 2 * int_len); char result[4 + sizeof(int) * 2]; // Both errno parts should be 0 memset(result, 0, result_len); // Fill the 2 control parts strcpy(result, "EB"); strcpy(result + 2 + int_len, "ES"); // Run the test run_test( "SU4\xbb\xbb\0\0\0\0" "SU4\xcc\xcc\0\0\0\0" "T", 19, result, result_len); } // A close that fails int closeFail(int) { return (-1); } TEST(run, cant_close) { run_test("SU4\xff\xff\0\0\0\0", // This has 9 bytes 9, "S\x07", 2, false, closeFail); } int sendFDFail(const int, const int) { return (FD_SYSTEM_ERROR); } TEST(run, cant_send_fd) { run_test("SU4\xff\xff\0\0\0\0", // This has 9 bytes 9, "S", 1, false, closeIgnore, sendFDFail); } }