kqueue_reactor.hpp 14.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
//
// kqueue_reactor.hpp
// ~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2010 Christopher M. Kohlhoff (chris at kohlhoff dot com)
// Copyright (c) 2005 Stefan Arentz (stefan at soze dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#ifndef ASIO_DETAIL_KQUEUE_REACTOR_HPP
#define ASIO_DETAIL_KQUEUE_REACTOR_HPP

#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)

#include "asio/detail/push_options.hpp"

#include "asio/detail/kqueue_reactor_fwd.hpp"

#if defined(ASIO_HAS_KQUEUE)

#include "asio/detail/push_options.hpp"
#include <cstddef>
#include <sys/types.h>
#include <sys/event.h>
#include <sys/time.h>
#include <boost/config.hpp>
#include <boost/throw_exception.hpp>
#include "asio/detail/pop_options.hpp"

#include "asio/error.hpp"
#include "asio/io_service.hpp"
#include "asio/system_error.hpp"
#include "asio/detail/hash_map.hpp"
#include "asio/detail/mutex.hpp"
#include "asio/detail/op_queue.hpp"
#include "asio/detail/reactor_op.hpp"
#include "asio/detail/select_interrupter.hpp"
#include "asio/detail/service_base.hpp"
#include "asio/detail/socket_types.hpp"
#include "asio/detail/timer_op.hpp"
#include "asio/detail/timer_queue_base.hpp"
#include "asio/detail/timer_queue_fwd.hpp"
#include "asio/detail/timer_queue_set.hpp"

// Older versions of Mac OS X may not define EV_OOBAND.
#if !defined(EV_OOBAND)
# define EV_OOBAND EV_FLAG1
#endif // !defined(EV_OOBAND)

namespace asio {
namespace detail {

class kqueue_reactor
  : public asio::detail::service_base<kqueue_reactor>
{
public:
  enum op_types { read_op = 0, write_op = 1,
    connect_op = 1, except_op = 2, max_ops = 3 };

  // Per-descriptor queues.
  struct descriptor_state
  {
    descriptor_state() {}
    descriptor_state(const descriptor_state&) {}
    void operator=(const descriptor_state&) {}

    mutex mutex_;
    op_queue<reactor_op> op_queue_[max_ops];
    bool shutdown_;
  };

  // Per-descriptor data.
  typedef descriptor_state* per_descriptor_data;

  // Constructor.
  kqueue_reactor(asio::io_service& io_service)
    : asio::detail::service_base<kqueue_reactor>(io_service),
      io_service_(use_service<io_service_impl>(io_service)),
      mutex_(),
      kqueue_fd_(do_kqueue_create()),
      interrupter_(),
      shutdown_(false)
  {
    // The interrupter is put into a permanently readable state. Whenever we
    // want to interrupt the blocked kevent call we register a one-shot read
    // operation against the descriptor.
    interrupter_.interrupt();
  }

  // Destructor.
  ~kqueue_reactor()
  {
    close(kqueue_fd_);
  }

  // Destroy all user-defined handler objects owned by the service.
  void shutdown_service()
  {
    mutex::scoped_lock lock(mutex_);
    shutdown_ = true;
    lock.unlock();

    op_queue<operation> ops;

    descriptor_map::iterator iter = registered_descriptors_.begin();
    descriptor_map::iterator end = registered_descriptors_.end();
    while (iter != end)
    {
      for (int i = 0; i < max_ops; ++i)
        ops.push(iter->second.op_queue_[i]);
      iter->second.shutdown_ = true;
      ++iter;
    }

    timer_queues_.get_all_timers(ops);
  }

  // Initialise the task.
  void init_task()
  {
    io_service_.init_task();
  }

  // Register a socket with the reactor. Returns 0 on success, system error
  // code on failure.
  int register_descriptor(socket_type descriptor,
      per_descriptor_data& descriptor_data)
  {
    mutex::scoped_lock lock(registered_descriptors_mutex_);

    descriptor_map::iterator new_entry = registered_descriptors_.insert(
          std::make_pair(descriptor, descriptor_state())).first;
    descriptor_data = &new_entry->second;

    descriptor_data->shutdown_ = false;

    return 0;
  }

  // Start a new operation. The reactor operation will be performed when the
  // given descriptor is flagged as ready, or an error has occurred.
  void start_op(int op_type, socket_type descriptor,
      per_descriptor_data& descriptor_data,
      reactor_op* op, bool allow_speculative)
  {
    mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
    if (descriptor_data->shutdown_)
      return;

    bool first = descriptor_data->op_queue_[op_type].empty();
    if (first)
    {
      if (allow_speculative)
      {
        if (op_type != read_op || descriptor_data->op_queue_[except_op].empty())
        {
          if (op->perform())
          {
            descriptor_lock.unlock();
            io_service_.post_immediate_completion(op);
            return;
          }
        }
      }
    }

    descriptor_data->op_queue_[op_type].push(op);
    io_service_.work_started();

    if (first)
    {
      struct kevent event;
      switch (op_type)
      {
      case read_op:
        EV_SET(&event, descriptor, EVFILT_READ,
            EV_ADD | EV_ONESHOT, 0, 0, descriptor_data);
        break;
      case write_op:
        EV_SET(&event, descriptor, EVFILT_WRITE,
            EV_ADD | EV_ONESHOT, 0, 0, descriptor_data);
        break;
      case except_op:
        if (!descriptor_data->op_queue_[read_op].empty())
          return; // Already registered for read events.
        EV_SET(&event, descriptor, EVFILT_READ,
            EV_ADD | EV_ONESHOT, EV_OOBAND, 0, descriptor_data);
        break;
      }

      if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)
      {
        op->ec_ = asio::error_code(errno,
            asio::error::get_system_category());
        descriptor_data->op_queue_[op_type].pop();
        io_service_.post_deferred_completion(op);
      }
    }
  }

  // Cancel all operations associated with the given descriptor. The
  // handlers associated with the descriptor will be invoked with the
  // operation_aborted error.
208
  void cancel_ops(socket_type , per_descriptor_data& descriptor_data)
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
  {
    mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);

    op_queue<operation> ops;
    for (int i = 0; i < max_ops; ++i)
    {
      while (reactor_op* op = descriptor_data->op_queue_[i].front())
      {
        op->ec_ = asio::error::operation_aborted;
        descriptor_data->op_queue_[i].pop();
        ops.push(op);
      }
    }

    descriptor_lock.unlock();

    io_service_.post_deferred_completions(ops);
  }

  // Cancel any operations that are running against the descriptor and remove
  // its registration from the reactor.
  void close_descriptor(socket_type descriptor,
      per_descriptor_data& descriptor_data)
  {
    mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
    mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_);

    // Remove the descriptor from the set of known descriptors. The descriptor
    // will be automatically removed from the kqueue set when it is closed.
    descriptor_data->shutdown_ = true;

    op_queue<operation> ops;
    for (int i = 0; i < max_ops; ++i)
    {
      while (reactor_op* op = descriptor_data->op_queue_[i].front())
      {
        op->ec_ = asio::error::operation_aborted;
        descriptor_data->op_queue_[i].pop();
        ops.push(op);
      }
    }

    descriptor_lock.unlock();

    registered_descriptors_.erase(descriptor);

    descriptors_lock.unlock();

    io_service_.post_deferred_completions(ops);
  }

  // Add a new timer queue to the reactor.
  template <typename Time_Traits>
  void add_timer_queue(timer_queue<Time_Traits>& timer_queue)
  {
    mutex::scoped_lock lock(mutex_);
    timer_queues_.insert(&timer_queue);
  }

  // Remove a timer queue from the reactor.
  template <typename Time_Traits>
  void remove_timer_queue(timer_queue<Time_Traits>& timer_queue)
  {
    mutex::scoped_lock lock(mutex_);
    timer_queues_.erase(&timer_queue);
  }

  // Schedule a new operation in the given timer queue to expire at the
  // specified absolute time.
  template <typename Time_Traits>
  void schedule_timer(timer_queue<Time_Traits>& timer_queue,
      const typename Time_Traits::time_type& time, timer_op* op, void* token)
  {
    mutex::scoped_lock lock(mutex_);
    if (!shutdown_)
    {
      bool earliest = timer_queue.enqueue_timer(time, op, token);
      io_service_.work_started();
      if (earliest)
        interrupt();
    }
  }

  // Cancel the timer operations associated with the given token. Returns the
  // number of operations that have been posted or dispatched.
  template <typename Time_Traits>
  std::size_t cancel_timer(timer_queue<Time_Traits>& timer_queue, void* token)
  {
    mutex::scoped_lock lock(mutex_);
    op_queue<operation> ops;
    std::size_t n = timer_queue.cancel_timer(token, ops);
    lock.unlock();
    io_service_.post_deferred_completions(ops);
    return n;
  }

  // Run the kqueue loop.
  void run(bool block, op_queue<operation>& ops)
  {
    mutex::scoped_lock lock(mutex_);

    // Determine how long to block while waiting for events.
    timespec timeout_buf = { 0, 0 };
    timespec* timeout = block ? get_timeout(timeout_buf) : &timeout_buf;

    lock.unlock();

    // Block on the kqueue descriptor.
    struct kevent events[128];
    int num_events = kevent(kqueue_fd_, 0, 0, events, 128, timeout);

    // Dispatch the waiting events.
    for (int i = 0; i < num_events; ++i)
    {
      int descriptor = events[i].ident;
      void* ptr = events[i].udata;
      if (ptr == &interrupter_)
      {
        // No need to reset the interrupter since we're leaving the descriptor
        // in a ready-to-read state and relying on one-shot notifications.
      }
      else
      {
        descriptor_state* descriptor_data = static_cast<descriptor_state*>(ptr);
        mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);

        // Exception operations must be processed first to ensure that any
        // out-of-band data is read before normal data.
        static const int filter[max_ops] =
          { EVFILT_READ, EVFILT_WRITE, EVFILT_READ };
        for (int j = max_ops - 1; j >= 0; --j)
        {
          if (events[i].filter == filter[j])
          {
            if (j != except_op || events[i].flags & EV_OOBAND)
            {
              while (reactor_op* op = descriptor_data->op_queue_[j].front())
              {
                if (events[i].flags & EV_ERROR)
                {
                  op->ec_ = asio::error_code(events[i].data,
                      asio::error::get_system_category());
                  descriptor_data->op_queue_[j].pop();
                  ops.push(op);
                }
                if (op->perform())
                {
                  descriptor_data->op_queue_[j].pop();
                  ops.push(op);
                }
                else
                  break;
              }
            }
          }
        }

        // Renew registration for event notifications.
        struct kevent event;
        switch (events[i].filter)
        {
        case EVFILT_READ:
          if (!descriptor_data->op_queue_[read_op].empty())
            EV_SET(&event, descriptor, EVFILT_READ,
                EV_ADD | EV_ONESHOT, 0, 0, descriptor_data);
          else if (!descriptor_data->op_queue_[except_op].empty())
            EV_SET(&event, descriptor, EVFILT_READ,
                EV_ADD | EV_ONESHOT, EV_OOBAND, 0, descriptor_data);
          else
            continue;
        case EVFILT_WRITE:
          if (!descriptor_data->op_queue_[write_op].empty())
            EV_SET(&event, descriptor, EVFILT_WRITE,
                EV_ADD | EV_ONESHOT, 0, 0, descriptor_data);
          else
            continue;
        default:
          break;
        }
        if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)
        {
          asio::error_code error(errno,
              asio::error::get_system_category());
          for (int j = 0; j < max_ops; ++j)
          {
            while (reactor_op* op = descriptor_data->op_queue_[j].front())
            {
              op->ec_ = error;
              descriptor_data->op_queue_[j].pop();
              ops.push(op);
            }
          }
        }
      }
    }

    lock.lock();
    timer_queues_.get_ready_timers(ops);
  }

  // Interrupt the kqueue loop.
  void interrupt()
  {
    struct kevent event;
    EV_SET(&event, interrupter_.read_descriptor(),
        EVFILT_READ, EV_ADD | EV_ONESHOT, 0, 0, &interrupter_);
    ::kevent(kqueue_fd_, &event, 1, 0, 0, 0);
  }

private:
  // Create the kqueue file descriptor. Throws an exception if the descriptor
  // cannot be created.
  static int do_kqueue_create()
  {
    int fd = kqueue();
    if (fd == -1)
    {
      boost::throw_exception(
          asio::system_error(
            asio::error_code(errno,
              asio::error::get_system_category()),
            "kqueue"));
    }
    return fd;
  }

  // Get the timeout value for the kevent call.
  timespec* get_timeout(timespec& ts)
  {
    // By default we will wait no longer than 5 minutes. This will ensure that
    // any changes to the system clock are detected after no longer than this.
    long usec = timer_queues_.wait_duration_usec(5 * 60 * 1000 * 1000);
    ts.tv_sec = usec / 1000000;
    ts.tv_nsec = (usec % 1000000) * 1000;
    return &ts;
  }

  // The io_service implementation used to post completions.
  io_service_impl& io_service_;

  // Mutex to protect access to internal data.
  mutex mutex_;

  // The kqueue file descriptor.
  int kqueue_fd_;

  // The interrupter is used to break a blocking kevent call.
  select_interrupter interrupter_;

  // The timer queues.
  timer_queue_set timer_queues_;

  // Whether the service has been shut down.
  bool shutdown_;

  // Mutex to protect access to the registered descriptors.
  mutex registered_descriptors_mutex_;

  // Keep track of all registered descriptors. This code relies on the fact that
  // the hash_map implementation pools deleted nodes, meaning that we can assume
  // our descriptor_state pointer remains valid even after the entry is removed.
  // Technically this is not true for C++98, as that standard says that spliced
  // elements in a list are invalidated. However, C++0x fixes this shortcoming
  // so we'll just assume that C++98 std::list implementations will do the right
  // thing anyway.
  typedef detail::hash_map<socket_type, descriptor_state> descriptor_map;
  descriptor_map registered_descriptors_;
};

} // namespace detail
} // namespace asio

#endif // defined(ASIO_HAS_KQUEUE)

#include "asio/detail/pop_options.hpp"

#endif // ASIO_DETAIL_KQUEUE_REACTOR_HPP