Commit 0b7cf4ce authored by Marcin Siodelski's avatar Marcin Siodelski
Browse files

[2893] Created BPF packet filtering class.

parent 6582b6c2
......@@ -50,10 +50,16 @@ libkea_dhcp___la_SOURCES += pkt_filter6.h pkt_filter6.cc
libkea_dhcp___la_SOURCES += pkt_filter_inet.cc pkt_filter_inet.h
libkea_dhcp___la_SOURCES += pkt_filter_inet6.cc pkt_filter_inet6.h
# Utilize Linux Packet Filtering on Linux.
if OS_LINUX
libkea_dhcp___la_SOURCES += pkt_filter_lpf.cc pkt_filter_lpf.h
endif
# Utilize Berkeley Packet Filtering on BSD.
if OS_BSD
libkea_dhcp___la_SOURCES += pkt_filter_bpf.cc pkt_filter_bpf.h
endif
libkea_dhcp___la_SOURCES += std_option_defs.h
libkea_dhcp___la_SOURCES += docsis3_option_defs.h
......
// Copyright (C) 2014 Internet Systems Consortium, Inc. ("ISC")
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH
// REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
// AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT,
// INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
// LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
// OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
// PERFORMANCE OF THIS SOFTWARE.
#include <config.h>
#include <dhcp/dhcp4.h>
#include <dhcp/iface_mgr.h>
#include <dhcp/pkt4.h>
#include <dhcp/pkt_filter_bpf.h>
#include <dhcp/protocol_util.h>
#include <exceptions/exceptions.h>
#include <algorithm>
#include <net/bpf.h>
#include <net/ethernet.h>
namespace {
using namespace isc::dhcp;
/// @brief Maximum number of attempts to open BPF device.
const unsigned int MAX_BPF_OPEN_ATTEMPTS = 100;
/// The following structure defines a Berkely Packet Filter program to perform
/// packet filtering. The program operates on Ethernet packets. To help with
/// interpretation of the program, for the types of Ethernet packets we are
/// interested in, the header layout is:
///
/// 6 bytes Destination Ethernet Address
/// 6 bytes Source Ethernet Address
/// 2 bytes Ethernet packet type
///
/// 20 bytes Fixed part of IP header
/// variable Variable part of IP header
///
/// 2 bytes UDP Source port
/// 2 bytes UDP destination port
/// 4 bytes Rest of UDP header
///
/// @todo We may want to extend the filter to receive packets sent
/// to the particular IP address assigned to the interface or
/// broadcast address.
struct bpf_insn dhcp_sock_filter [] = {
// Make sure this is an IP packet: check the half-word (two bytes)
// at offset 12 in the packet (the Ethernet packet type). If it
// is, advance to the next instruction. If not, advance 8
// instructions (which takes execution to the last instruction in
// the sequence: "drop it").
BPF_STMT(BPF_LD + BPF_H + BPF_ABS, ETHERNET_PACKET_TYPE_OFFSET),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, ETHERTYPE_IP, 0, 8),
// Make sure it's a UDP packet. The IP protocol is at offset
// 9 in the IP header so, adding the Ethernet packet header size
// of 14 bytes gives an absolute byte offset in the packet of 23.
BPF_STMT(BPF_LD + BPF_B + BPF_ABS, ETHERNET_HEADER_LEN + IP_PROTO_TYPE_OFFSET),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, IPPROTO_UDP, 0, 6),
// Make sure this isn't a fragment by checking that the fragment
// offset field in the IP header is zero. This field is the
// least-significant 13 bits in the bytes at offsets 6 and 7 in
// the IP header, so the half-word at offset 20 (6 + size of
// Ethernet header) is loaded and an appropriate mask applied.
BPF_STMT(BPF_LD + BPF_H + BPF_ABS, ETHERNET_HEADER_LEN + IP_FLAGS_OFFSET),
BPF_JUMP(BPF_JMP + BPF_JSET + BPF_K, 0x1fff, 4, 0),
// Get the IP header length. This is achieved by the following
// (special) instruction that, given the offset of the start
// of the IP header (offset 14) loads the IP header length.
BPF_STMT(BPF_LDX + BPF_B + BPF_MSH, ETHERNET_HEADER_LEN),
// Make sure it's to the right port. The following instruction
// adds the previously extracted IP header length to the given
// offset to locate the correct byte. The given offset of 16
// comprises the length of the Ethernet header (14) plus the offset
// of the UDP destination port (2) within the UDP header.
BPF_STMT(BPF_LD + BPF_H + BPF_IND, ETHERNET_HEADER_LEN + UDP_DEST_PORT),
// The following instruction tests against the default DHCP server port,
// but the action port is actually set in PktFilterBPF::openSocket().
// N.B. The code in that method assumes that this instruction is at
// offset 8 in the program. If this is changed, openSocket() must be
// updated.
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, DHCP4_SERVER_PORT, 0, 1),
// If we passed all the tests, ask for the whole packet.
BPF_STMT(BPF_RET + BPF_K, (u_int)-1),
// Otherwise, drop it.
BPF_STMT(BPF_RET + BPF_K, 0),
};
}
using namespace isc::util;
namespace isc {
namespace dhcp {
SocketInfo
PktFilterBPF::openSocket(const Iface& iface,
const isc::asiolink::IOAddress& addr,
const uint16_t port, const bool,
const bool) {
// Open fallback socket first. If it fails, it will give us an indication
// that there is another service (perhaps DHCP server) running.
// The function will throw an exception and effectivelly cease opening
// the BPF device below.
int fallback = openFallbackSocket(addr, port);
// Fallback has opened so, let's open the BPF device that we will be
// using for receiving and sending packets. The BPF device is opened
// by opening a file /dev/bpf%d where %d is a number. There may be
// devices already open so we will try them one by one and open the
// one that is not busy.
int sock = -1;
for (unsigned int bpf_dev = 0;
bpf_dev < MAX_BPF_OPEN_ATTEMPTS && (sock < 0);
++bpf_dev) {
std::ostringstream s;
s << "/dev/bpf" << bpf_dev;
sock = open(s.str().c_str(), O_RDWR, 0);
if (sock < 0) {
// If device busy, try another one.
if (errno == EBUSY) {
continue;
}
// All other errors are fatal, so close the fallback socket
// and throw.
close(fallback);
isc_throw(SocketConfigError, "Failed to open BPF device " << s);
}
}
// The BPF device is now open. Now it needs to be configured.
// Associate the device with the interface name.
struct ifreq iface_data;
memset(&iface_data, 0, sizeof(iface_data));
std::strncpy(iface_data.ifr_name, iface.getName().c_str(),
std::min(static_cast<int>(IFNAMSIZ),
static_cast<int>(iface.getName().length())));
if (ioctl(sock, BIOCSETIF, &iface_data) < 0) {
close(fallback);
close(sock);
isc_throw(SocketConfigError, "Failed to associate BPF device "
" with interface " << iface.getName());
}
// Get the BPF version supported by the kernel. Every application
// must check this version against the current version in use.
struct bpf_version ver;
if (ioctl(sock, BIOCVERSION, &ver) < 0) {
close(fallback);
close(sock);
isc_throw(SocketConfigError, "Failed to obtain the BPF version"
" number from the kernel");
}
// Major BPF version must match and the minor version that the kernel
// runs must be at least the current version in use.
if ((ver.bv_major != BPF_MAJOR_VERSION) ||
(ver.bv_minor < BPF_MINOR_VERSION)) {
close(fallback);
close(sock);
isc_throw(SocketConfigError, "Invalid BPF version");
}
// Get the size of the read buffer for this device. We will need to
// allocate the buffer of this size for packet reads.
unsigned int buf_len = 0;
if (ioctl(sock, BIOCGBLEN, &buf_len) < 0) {
close(fallback);
close(sock);
isc_throw(SocketConfigError, "Unable to obtain the required"
" buffer legth for reads from BPF device");
}
// Configure the BPF program to receive packets on the specified port.
dhcp_sock_filter[8].k = port;
// Set the filter program so as we only get packets we are interested in.
struct bpf_program prog;
prog.bf_insns = dhcp_sock_filter;
prog.bf_len = sizeof(dhcp_sock_filter) / sizeof(struct bpf_insn);
if (ioctl(sock, BIOCSETF, &prog) < 0) {
close(fallback);
close(sock);
isc_throw(SocketConfigError, "Failed to install BPF filter"
" program");
}
// Everything is ok, return the socket (BPF device descriptor) to
// the caller.
return (SocketInfo(addr, port, sock, fallback));
}
Pkt4Ptr
PktFilterBPF::receive(const Iface&/* iface */, const SocketInfo& /*socket_info*/) {
return (Pkt4Ptr());
/* uint8_t raw_buf[IfaceMgr::RCVBUFSIZE];
// First let's get some data from the fallback socket. The data will be
// discarded but we don't want the socket buffer to bloat. We get the
// packets from the socket in loop but most of the time the loop will
// end after receiving one packet. The call to recv returns immediately
// when there is no data left on the socket because the socket is
// non-blocking.
// @todo In the normal conditions, both the primary socket and the fallback
// socket are in sync as they are set to receive packets on the same
// address and port. The reception of packets on the fallback socket
// shouldn't cause significant lags in packet reception. If we find in the
// future that it does, the sort of threshold could be set for the maximum
// bytes received on the fallback socket in a single round. Further
// optimizations would include an asynchronous read from the fallback socket
// when the DHCP server is idle.
int datalen;
do {
datalen = recv(socket_info.fallbackfd_, raw_buf, sizeof(raw_buf), 0);
} while (datalen > 0);
// Now that we finished getting data from the fallback socket, we
// have to get the data from the raw socket too.
int data_len = read(socket_info.sockfd_, raw_buf, sizeof(raw_buf));
// If negative value is returned by read(), it indicates that an
// error occured. If returned value is 0, no data was read from the
// socket. In both cases something has gone wrong, because we expect
// that a chunk of data is there. We signal the lack of data by
// returing an empty packet.
if (data_len <= 0) {
return Pkt4Ptr();
}
InputBuffer buf(raw_buf, data_len);
// @todo: This is awkward way to solve the chicken and egg problem
// whereby we don't know the offset where DHCP data start in the
// received buffer when we create the packet object. In general case,
// the IP header has variable length. The information about its length
// is stored in one of its fields. Therefore, we have to decode the
// packet to get the offset of the DHCP data. The dummy object is
// created so as we can pass it to the functions which decode IP stack
// and find actual offset of the DHCP data.
// Once we find the offset we can create another Pkt4 object from
// the reminder of the input buffer and set the IP addresses and
// ports from the dummy packet. We should consider doing it
// in some more elegant way.
Pkt4Ptr dummy_pkt = Pkt4Ptr(new Pkt4(DHCPDISCOVER, 0));
// Decode ethernet, ip and udp headers.
decodeEthernetHeader(buf, dummy_pkt);
decodeIpUdpHeader(buf, dummy_pkt);
// Read the DHCP data.
std::vector<uint8_t> dhcp_buf;
buf.readVector(dhcp_buf, buf.getLength() - buf.getPosition());
// Decode DHCP data into the Pkt4 object.
Pkt4Ptr pkt = Pkt4Ptr(new Pkt4(&dhcp_buf[0], dhcp_buf.size()));
// Set the appropriate packet members using data collected from
// the decoded headers.
pkt->setIndex(iface.getIndex());
pkt->setIface(iface.getName());
pkt->setLocalAddr(dummy_pkt->getLocalAddr());
pkt->setRemoteAddr(dummy_pkt->getRemoteAddr());
pkt->setLocalPort(dummy_pkt->getLocalPort());
pkt->setRemotePort(dummy_pkt->getRemotePort());
pkt->setLocalHWAddr(dummy_pkt->getLocalHWAddr());
pkt->setRemoteHWAddr(dummy_pkt->getRemoteHWAddr());
return (pkt); */
}
int
PktFilterBPF::send(const Iface& /*iface*/, uint16_t /*sockfd*/, const Pkt4Ptr& /*pkt*/) {
return 0;
/* OutputBuffer buf(14);
// Some interfaces may have no HW address - e.g. loopback interface.
// For these interfaces the HW address length is 0. If this is the case,
// then we will rely on the functions which construct the IP/UDP headers
// to provide a default HW addres. Otherwise, create the HW address
// object using the HW address of the interface.
if (iface.getMacLen() > 0) {
HWAddrPtr hwaddr(new HWAddr(iface.getMac(), iface.getMacLen(),
iface.getHWType()));
pkt->setLocalHWAddr(hwaddr);
}
// Ethernet frame header.
// Note that we don't validate whether HW addresses in 'pkt'
// are valid because they are checked by the function called.
writeEthernetHeader(pkt, buf);
// IP and UDP header
writeIpUdpHeader(pkt, buf);
// DHCPv4 message
buf.writeData(pkt->getBuffer().getData(), pkt->getBuffer().getLength());
sockaddr_ll sa;
sa.sll_family = AF_PACKET;
sa.sll_ifindex = iface.getIndex();
sa.sll_protocol = htons(ETH_P_IP);
sa.sll_halen = 6;
int result = sendto(sockfd, buf.getData(), buf.getLength(), 0,
reinterpret_cast<const struct sockaddr*>(&sa),
sizeof(sockaddr_ll));
if (result < 0) {
isc_throw(SocketWriteError, "failed to send DHCPv4 packet, errno="
<< errno << " (check errno.h)");
}
return (0);
*/
}
} // end of isc::dhcp namespace
} // end of isc namespace
// Copyright (C) 2014 Internet Systems Consortium, Inc. ("ISC")
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH
// REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
// AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT,
// INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
// LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
// OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
// PERFORMANCE OF THIS SOFTWARE.
#ifndef PKT_FILTER_BPF_H
#define PKT_FILTER_BPF_H
#include <dhcp/pkt_filter.h>
#include <util/buffer.h>
namespace isc {
namespace dhcp {
/// @brief Packet handling class using Berkeley Packet Filtering
///
/// This class provides methods to send and recive DHCPv4 messages using raw
/// sockets and Berkeley Packet Filtering. It is used by @c isc::dhcp::IfaceMgr
/// to send DHCPv4 messages to the hosts which don't have an IPv4 address
/// assigned yet.
class PktFilterBPF : public PktFilter {
public:
/// @brief Check if packet can be sent to the host without address directly.
///
/// This class supports direct responses to the host without address.
///
/// @return true always.
virtual bool isDirectResponseSupported() const {
return (true);
}
/// @brief Open primary and fallback socket.
///
/// @param iface Interface descriptor.
/// @param addr Address on the interface to be used to send packets.
/// @param port Port number.
/// @param receive_bcast Configure socket to receive broadcast messages
/// @param send_bcast Configure socket to send broadcast messages.
///
/// @return A structure describing a primary and fallback socket.
virtual SocketInfo openSocket(const Iface& iface,
const isc::asiolink::IOAddress& addr,
const uint16_t port,
const bool receive_bcast,
const bool send_bcast);
/// @brief Receive packet over specified socket.
///
/// @param iface interface
/// @param socket_info structure holding socket information
///
/// @return Received packet
virtual Pkt4Ptr receive(const Iface& iface, const SocketInfo& socket_info);
/// @brief Send packet over specified socket.
///
/// @param iface interface to be used to send packet
/// @param sockfd socket descriptor
/// @param pkt packet to be sent
///
/// @return result of sending a packet. It is 0 if successful.
virtual int send(const Iface& iface, uint16_t sockfd,
const Pkt4Ptr& pkt);
};
} // namespace isc::dhcp
} // namespace isc
#endif // PKT_FILTER_BPF_H
......@@ -78,10 +78,16 @@ libdhcp___unittests_SOURCES += pkt_filter6_test_stub.cc pkt_filter_test_stub.h
libdhcp___unittests_SOURCES += pkt_filter_test_utils.h pkt_filter_test_utils.cc
libdhcp___unittests_SOURCES += pkt_filter6_test_utils.h pkt_filter6_test_utils.cc
# Utilize Linux Packet Filtering on Linux.
if OS_LINUX
libdhcp___unittests_SOURCES += pkt_filter_lpf_unittest.cc
endif
# Utilize Berkeley Packet Filtering on BSD.
if OS_BSD
libdhcp___unittests_SOURCES += pkt_filter_bpf_unittest.cc
endif
libdhcp___unittests_SOURCES += protocol_util_unittest.cc
libdhcp___unittests_SOURCES += duid_unittest.cc
......
// Copyright (C) 2014 Internet Systems Consortium, Inc. ("ISC")
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH
// REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
// AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT,
// INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
// LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
// OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
// PERFORMANCE OF THIS SOFTWARE.
#include <config.h>
#include <asiolink/io_address.h>
#include <dhcp/iface_mgr.h>
#include <dhcp/pkt4.h>
#include <dhcp/pkt_filter_bpf.h>
#include <dhcp/protocol_util.h>
#include <dhcp/tests/pkt_filter_test_utils.h>
#include <util/buffer.h>
#include <gtest/gtest.h>
#include <sys/socket.h>
using namespace isc::asiolink;
using namespace isc::dhcp;
using namespace isc::util;
namespace {
/// Port number used by tests.
const uint16_t PORT = 10067;
/// Size of the buffer holding received packets.
const size_t RECV_BUF_SIZE = 2048;
// Test fixture class inherits from the class common for all packet
// filter tests.
class PktFilterBPFTest : public isc::dhcp::test::PktFilterTest {
public:
PktFilterBPFTest() : PktFilterTest(PORT) {
}
};
// This test verifies that the PktFilterBPF class reports its capability
// to send packets to the host having no IP address assigned.
TEST_F(PktFilterBPFTest, isDirectResponseSupported) {
// Create object under test.
PktFilterBPF pkt_filter;
// Must support direct responses.
EXPECT_TRUE(pkt_filter.isDirectResponseSupported());
}
// All tests below require root privileges to execute successfully. If
// they are run as non-root user they will fail due to insufficient privileges
// to open raw network sockets. Therefore, they should remain disabled by default
// and "DISABLED_" tags should not be removed. If one is willing to run these
// tests please run "make check" as root and enable execution of disabled tests
// by setting GTEST_ALSO_RUN_DISABLED_TESTS to a value other than 0. In order
// to run tests from this particular file, set the GTEST_FILTER environmental
// variable to "PktFilterBPFTest.*" apart from GTEST_ALSO_RUN_DISABLED_TESTS
// setting.
// This test verifies that the raw AF_PACKET family socket can
// be opened and bound to the specific interface.
TEST_F(PktFilterBPFTest, DISABLED_openSocket) {
// Create object representing loopback interface.
Iface iface(ifname_, ifindex_);
// Set loopback address.
IOAddress addr("127.0.0.1");
// Try to open socket.
PktFilterBPF pkt_filter;
ASSERT_NO_THROW(
sock_info_ = pkt_filter.openSocket(iface, addr, PORT, false, false);
);
// Check that the primary socket has been opened.
ASSERT_GE(sock_info_.sockfd_, 0);
// Check that the fallback socket has been opened too.
ASSERT_GE(sock_info_.fallbackfd_, 0);
/* // Verify that the socket belongs to AF_PACKET family.
sockaddr_ll sock_address;
socklen_t sock_address_len = sizeof(sock_address);
ASSERT_EQ(0, getsockname(sock_info_.sockfd_,
reinterpret_cast<sockaddr*>(&sock_address),
&sock_address_len));
EXPECT_EQ(AF_PACKET, sock_address.sll_family);
// Verify that the socket is bound to appropriate interface.
EXPECT_EQ(ifindex_, sock_address.sll_ifindex);
// Verify that the socket has SOCK_RAW type.
int sock_type;
socklen_t sock_type_len = sizeof(sock_type);
ASSERT_EQ(0, getsockopt(sock_info_.sockfd_, SOL_SOCKET, SO_TYPE,
&sock_type, &sock_type_len));
EXPECT_EQ(SOCK_RAW, sock_type); */
}
// This test verifies correctness of sending DHCP packet through the raw
// socket, whereby all IP stack headers are hand-crafted.
TEST_F(PktFilterBPFTest, DISABLED_send) {
/* // Packet will be sent over loopback interface.
Iface iface(ifname_, ifindex_);
IOAddress addr("127.0.0.1");
// Create an instance of the class which we are testing.
PktFilterBPF pkt_filter;
// Open socket. We don't check that the socket has appropriate
// options and family set because we have checked that in the
// openSocket test already.
sock_info_ = pkt_filter.openSocket(iface, addr, PORT, false, false);
ASSERT_GE(sock_info_.sockfd_, 0);
// Send the packet over the socket.
ASSERT_NO_THROW(pkt_filter.send(iface, sock_info_.sockfd_, test_message_));
// Read the data from socket.
fd_set readfds;
FD_ZERO(&readfds);
FD_SET(sock_info_.sockfd_, &readfds);
struct timeval timeout;
timeout.tv_sec = 5;
timeout.tv_usec = 0;
int result = select(sock_info_.sockfd_ + 1, &readfds, NULL, NULL, &timeout);
// We should receive some data from loopback interface.
ASSERT_GT(result, 0);
// Get the actual data.
uint8_t rcv_buf[RECV_BUF_SIZE];
result = recv(sock_info_.sockfd_, rcv_buf, RECV_BUF_SIZE, 0);
ASSERT_GT(result, 0);
Pkt4Ptr dummy_pkt = Pkt4Ptr(new Pkt4(DHCPDISCOVER, 0));
InputBuffer buf(rcv_buf, result);
// Decode ethernet, ip and udp headers.
decodeEthernetHeader(buf, dummy_pkt);
decodeIpUdpHeader(buf, dummy_pkt);
// Create the DHCPv4 packet from the received data.
std::vector<uint8_t> dhcp_buf;
buf.readVector(dhcp_buf, buf.getLength() - buf.getPosition());
Pkt4Ptr rcvd_pkt(new Pkt4(&dhcp_buf[0], dhcp_buf.size()));
ASSERT_TRUE(rcvd_pkt);
// Parse the packet.
ASSERT_NO_THROW(rcvd_pkt->unpack());
// Check if the received message is correct.
testRcvdMessage(rcvd_pkt); */
}
// This test verifies correctness of reception of the DHCP packet over
// raw socket, whereby all IP stack headers are hand-crafted.
TEST_F(PktFilterBPFTest, DISABLED_receive) {
// Packet will be received over loopback interface.
Iface iface(ifname_, ifindex_);
IOAddress addr("127.0.0.1");
// Create an instance of the class which we are testing.
PktFilterBPF pkt_filter;
// Open socket. We don't check that the socket has appropriate
// options and family set because we have checked that in the
// openSocket test already.
sock_info_ = pkt_filter.openSocket(iface, addr, PORT, false, false);
ASSERT_GE(sock_info_.sockfd_, 0);
// Send DHCPv4 message to the local loopback address and server's port.
sendMessage();